The inadequacy of the traditional power law formula in predicting the growth kinetics of intermetallic compounds at the interface of solder joints in microelectronic packaging
Yuexing Wang , Xiangou Zhang , Linwei Cao , Xiangyu Sun
{"title":"The inadequacy of the traditional power law formula in predicting the growth kinetics of intermetallic compounds at the interface of solder joints in microelectronic packaging","authors":"Yuexing Wang , Xiangou Zhang , Linwei Cao , Xiangyu Sun","doi":"10.1016/j.intermet.2024.108587","DOIUrl":null,"url":null,"abstract":"<div><div>The growth of intermetallic compounds (IMC) at the interface of solder joints in microelectronic packaging is one of the most critical factors affecting the long-term reliability. Traditional studies have shown that IMCs growth curves follow a power-law relationship with an exponent of 1/2 or 1/3 approximately. However, limited research has been conducted to validate the effectiveness of this formula in predicting IMCs growth. Consequently, we investigated the growth kinetics of IMCs under ultra-long-term isothermal aging conditions. Our findings revealed that the power-law formulas derived from fitting failed to accurately predict the subsequent growth of IMCs beyond the fitting process. This inadequacy was attributed to the initial consideration of the IMCs growth rate as infinite. To address this issue, an improved kinetic growth model of interfacial IMCs layer based on ordinary differential equation modeling is proposed. The effectiveness of the proposed model was validated through experiments conducted by ourselves and other researchers, demonstrating significantly improved accuracy in predicting the growth kinetics of IMCs compared to the traditional approach.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"176 ","pages":"Article 108587"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524004060","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The growth of intermetallic compounds (IMC) at the interface of solder joints in microelectronic packaging is one of the most critical factors affecting the long-term reliability. Traditional studies have shown that IMCs growth curves follow a power-law relationship with an exponent of 1/2 or 1/3 approximately. However, limited research has been conducted to validate the effectiveness of this formula in predicting IMCs growth. Consequently, we investigated the growth kinetics of IMCs under ultra-long-term isothermal aging conditions. Our findings revealed that the power-law formulas derived from fitting failed to accurately predict the subsequent growth of IMCs beyond the fitting process. This inadequacy was attributed to the initial consideration of the IMCs growth rate as infinite. To address this issue, an improved kinetic growth model of interfacial IMCs layer based on ordinary differential equation modeling is proposed. The effectiveness of the proposed model was validated through experiments conducted by ourselves and other researchers, demonstrating significantly improved accuracy in predicting the growth kinetics of IMCs compared to the traditional approach.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.