{"title":"Mitigating impulsive noise in airborne PLC: Introducing the S-SAMP-PV algorithm for MIMO OFDM systems","authors":"Ruowen Yan, Qiao Li, Huagang Xiong","doi":"10.1016/j.sigpro.2024.109798","DOIUrl":null,"url":null,"abstract":"<div><div>Power Line Communication (PLC) offers an efficient solution for data transmission over electrical power lines, presenting a promising avenue for in-flight communication in More Electrical Aircraft (MEA). A significant challenge in airborne PLC is Impulsive Noise (IN), which hampers transmission reliability. Existing noise mitigation methods, while valuable, face limitations in airborne settings due to computational intensiveness and sub-optimal sparse recovery performance. This paper introduces the Structured Sparsity Adaptive Matching Pursuit with Preliminary partial support estimation and Variable step-size (S-SAMP-PV) algorithm, devised for Multiple-Input-Multiple-Output (MIMO) systems. It uniquely pre-estimates partial support of sparse IN signals, enabling adaptive convergence without prior sparsity knowledge. This methodology substantially reduces computational demands, satisfying stringent real-time requirements of airborne applications. In simulation, the S-SAMP-PV algorithm exhibits marked advantages over traditional algorithms such as Orthogonal Matching Pursuit (OMP). Specifically, it realizes an approximate 81.3<span><math><mtext>%</mtext></math></span> reduction in Normalized Mean Square Error (NMSE) and demonstrates around 37<span><math><mtext>%</mtext></math></span> improvement in computational efficiency relative to OMP. Moreover, its Bit Error Rate (BER) performance at high Signal to Noise Ratio (SNR) approaches the ideal scenario where IN is assumed to be perfectly eliminated. These results emphasize the promise of S-SAMP-PV in elevating the performance of airborne PLC systems by efficient IN mitigation.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"230 ","pages":"Article 109798"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424004183","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Power Line Communication (PLC) offers an efficient solution for data transmission over electrical power lines, presenting a promising avenue for in-flight communication in More Electrical Aircraft (MEA). A significant challenge in airborne PLC is Impulsive Noise (IN), which hampers transmission reliability. Existing noise mitigation methods, while valuable, face limitations in airborne settings due to computational intensiveness and sub-optimal sparse recovery performance. This paper introduces the Structured Sparsity Adaptive Matching Pursuit with Preliminary partial support estimation and Variable step-size (S-SAMP-PV) algorithm, devised for Multiple-Input-Multiple-Output (MIMO) systems. It uniquely pre-estimates partial support of sparse IN signals, enabling adaptive convergence without prior sparsity knowledge. This methodology substantially reduces computational demands, satisfying stringent real-time requirements of airborne applications. In simulation, the S-SAMP-PV algorithm exhibits marked advantages over traditional algorithms such as Orthogonal Matching Pursuit (OMP). Specifically, it realizes an approximate 81.3 reduction in Normalized Mean Square Error (NMSE) and demonstrates around 37 improvement in computational efficiency relative to OMP. Moreover, its Bit Error Rate (BER) performance at high Signal to Noise Ratio (SNR) approaches the ideal scenario where IN is assumed to be perfectly eliminated. These results emphasize the promise of S-SAMP-PV in elevating the performance of airborne PLC systems by efficient IN mitigation.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.