Gas dispersion modeling in stereoscopic space with obstacles using a novel spatiotemporal prediction network

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Shikuan Chen, Wenli Du, Xinjie Wang, Bing Wang, Chenxi Cao, Xin Peng
{"title":"Gas dispersion modeling in stereoscopic space with obstacles using a novel spatiotemporal prediction network","authors":"Shikuan Chen,&nbsp;Wenli Du,&nbsp;Xinjie Wang,&nbsp;Bing Wang,&nbsp;Chenxi Cao,&nbsp;Xin Peng","doi":"10.1016/j.compchemeng.2024.108934","DOIUrl":null,"url":null,"abstract":"<div><div>Gas leakage can lead to catastrophic consequences on both the environment and human health. To mitigate these losses, it is imperative to develop accurate and efficient spatiotemporal models for gas dispersion. The gas diffusion process occurs in a 3-dimensional (3D) space, but most research has been confined to flat-plane scenarios, neglecting the stereoscopic distribution of gas concentrations. To address this issue, we propose a novel method that combines 3D convolution with a long short-term memory neural network (3DConvLSTM) to forecast the 3D spatiotemporal concentration distribution of gas leakage in obstructed scenes. The 3D convolutional filters fully operate in the spatial domain, capturing spatial features horizontally and vertically. To provide data for the experiment, ethane leak scenarios with different sources, rates and wind directions are simulated by computational fluid dynamics (CFD). The results demonstrate that the 3DConvLSTM exhibits higher accuracy and requires fewer parameters, highlighting the effectiveness of the proposed method.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108934"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003521","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Gas leakage can lead to catastrophic consequences on both the environment and human health. To mitigate these losses, it is imperative to develop accurate and efficient spatiotemporal models for gas dispersion. The gas diffusion process occurs in a 3-dimensional (3D) space, but most research has been confined to flat-plane scenarios, neglecting the stereoscopic distribution of gas concentrations. To address this issue, we propose a novel method that combines 3D convolution with a long short-term memory neural network (3DConvLSTM) to forecast the 3D spatiotemporal concentration distribution of gas leakage in obstructed scenes. The 3D convolutional filters fully operate in the spatial domain, capturing spatial features horizontally and vertically. To provide data for the experiment, ethane leak scenarios with different sources, rates and wind directions are simulated by computational fluid dynamics (CFD). The results demonstrate that the 3DConvLSTM exhibits higher accuracy and requires fewer parameters, highlighting the effectiveness of the proposed method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信