Few-shot multi-hop reasoning via reinforcement learning and path search strategy over temporal knowledge graphs

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Luyi Bai, Han Zhang, Xuanxuan An, Lin Zhu
{"title":"Few-shot multi-hop reasoning via reinforcement learning and path search strategy over temporal knowledge graphs","authors":"Luyi Bai,&nbsp;Han Zhang,&nbsp;Xuanxuan An,&nbsp;Lin Zhu","doi":"10.1016/j.ipm.2024.104001","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-hop reasoning on knowledge graphs is an important way to complete the knowledge graph. However, existing multi-hop reasoning methods often perform poorly in few-shot scenarios and primarily focus on static knowledge graphs, neglecting to model the dynamic changes of events over time in Temporal Knowledge Graphs (TKGs). Therefore, in this paper, we consider the few-shot multi-hop reasoning task on TKGs and propose a few-shot multi-hop reasoning model for TKGs (TFSM), which uses a reinforcement learning framework to improve model interpretability and introduces the one-hop neighbors of the task entity to consider the impact of previous events on the representation of current task entity. In order to reduce the cost of searching complex nodes, our model adopts a strategy based on path search and prunes the search space by considering the correlation between existing paths and the current state. Compared to the baseline method, our model achieved 5-shot Few-shot Temporal Knowledge Graph (FTKG) performance improvements of 1.0% ∼ 18.9% on ICEWS18-few, 0.6% ∼ 22.9% on ICEWS14-few, and 0.7% ∼ 10.5% on GDELT-few. Extensive experiments show that TFSM outperforms existing models on most metrics on the commonly used benchmark datasets ICEWS18-few, ICEWS14-few, and GDELT-few. Furthermore, ablation experiments demonstrated the effectiveness of each part of our model. In addition, we demonstrate the interpretability of the model by performing path analysis with a path search-based strategy.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 3","pages":"Article 104001"},"PeriodicalIF":7.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324003601","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-hop reasoning on knowledge graphs is an important way to complete the knowledge graph. However, existing multi-hop reasoning methods often perform poorly in few-shot scenarios and primarily focus on static knowledge graphs, neglecting to model the dynamic changes of events over time in Temporal Knowledge Graphs (TKGs). Therefore, in this paper, we consider the few-shot multi-hop reasoning task on TKGs and propose a few-shot multi-hop reasoning model for TKGs (TFSM), which uses a reinforcement learning framework to improve model interpretability and introduces the one-hop neighbors of the task entity to consider the impact of previous events on the representation of current task entity. In order to reduce the cost of searching complex nodes, our model adopts a strategy based on path search and prunes the search space by considering the correlation between existing paths and the current state. Compared to the baseline method, our model achieved 5-shot Few-shot Temporal Knowledge Graph (FTKG) performance improvements of 1.0% ∼ 18.9% on ICEWS18-few, 0.6% ∼ 22.9% on ICEWS14-few, and 0.7% ∼ 10.5% on GDELT-few. Extensive experiments show that TFSM outperforms existing models on most metrics on the commonly used benchmark datasets ICEWS18-few, ICEWS14-few, and GDELT-few. Furthermore, ablation experiments demonstrated the effectiveness of each part of our model. In addition, we demonstrate the interpretability of the model by performing path analysis with a path search-based strategy.
基于时间知识图的强化学习和路径搜索策略的少射多跳推理
知识图上的多跳推理是完善知识图的重要途径。然而,现有的多跳推理方法往往在少数场景下表现不佳,并且主要关注静态知识图,而忽略了在时间知识图(TKGs)中对事件随时间的动态变化进行建模。因此,本文考虑了TKGs上的少跳多推理任务,提出了TKGs的少跳多推理模型(TFSM),该模型使用强化学习框架来提高模型的可解释性,并引入任务实体的一跳邻居来考虑先前事件对当前任务实体表示的影响。为了降低搜索复杂节点的代价,我们的模型采用基于路径搜索的策略,通过考虑已有路径与当前状态之间的相关性,对搜索空间进行修剪。与基线方法相比,我们的模型在ICEWS18-few上实现了5次时间知识图(FTKG)的性能改进,分别为1.0% ~ 18.9%、0.6% ~ 22.9%和0.7% ~ 10.5%。大量的实验表明,在常用的基准数据集ICEWS18-few、ICEWS14-few和GDELT-few上,TFSM在大多数指标上优于现有模型。此外,烧蚀实验证明了模型各部分的有效性。此外,我们通过使用基于路径搜索的策略执行路径分析来证明模型的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信