HDL Cholesterol-Associated Shifts in the Expression of Preselected Genes Reveal both Pro-Atherogenic and Atheroprotective Effects of HDL in Coronary Artery Disease.

IF 3.3 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Alexander D Dergunov, Elena V Nosova, Alexandra V Rozhkova, Margarita A Vinogradina, Veronika B Baserova, Mikhail A Popov, Svetlana A Limborska, Liudmila V Dergunova
{"title":"HDL Cholesterol-Associated Shifts in the Expression of Preselected Genes Reveal both Pro-Atherogenic and Atheroprotective Effects of HDL in Coronary Artery Disease.","authors":"Alexander D Dergunov, Elena V Nosova, Alexandra V Rozhkova, Margarita A Vinogradina, Veronika B Baserova, Mikhail A Popov, Svetlana A Limborska, Liudmila V Dergunova","doi":"10.31083/j.fbl2911396","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The associations of high-density lipoprotein (HDL) level and functionality with lipid metabolism, inflammation, and innate immunity in coronary artery disease (CAD) remain controversial. The differential expression of a set of genes related to HDL metabolism (24 genes) and atherogenesis (41 genes) in peripheral blood mononuclear cells (PBMC) from CAD and control patients with varied HDL cholesterol (HDL-C) levels was compared.</p><p><strong>Methods: </strong>76 male patients 40-60 years old with CAD diagnosed by angiography and 63 control patients were divided into three groups with low, normal (1.0-1.4 mM), and increased HDL-C levels. Transcript levels were measured by real-time PCR. The differentially expressed genes (DEGs) and associated metabolic pathways were analyzed for three groups, with prevalent CAD as an outcome.</p><p><strong>Results: </strong>The common feature was the increased odds ratio values for liver X receptor (LXR) gene expression for three patient groups. CAD patients with low HDL-C possessed 24 DEGs with lower expression of genes involved in cholesterol efflux, and down-regulated <i>SREBF1</i> and <i>ABCG1</i> are suggested as gene signatures. CAD patients with normal HDL-C possessed nine DEGs with down-regulated <i>ITGAM</i> and <i>ALB</i> as gene signatures. CAD patients with increased HDL-C possessed 19 DEGs with down-regulated <i>APOA1</i> and <i>HMGCR</i> as gene signatures. With gene expression signatures, one standard deviation higher average gene expressions were associated with 5.1-, 48.8-, and 38.9-fold fewer CAD cases for three patient groups. As HDL-C increased in CAD patients, the expression of <i>ABCG1</i>, <i>CUBN</i>, and <i>HDLBP</i> genes increased, while the expression of <i>HMGCR</i> and <i>NPC2</i> genes, involved in cholesterol synthesis and trafficking, decreased. The expression of <i>CD14</i>, <i>CD36</i>, <i>S100A8</i>, <i>S100A9</i>, <i>S100A12</i>, <i>TLR5</i>, <i>TLR8</i>, and <i>VEGFA</i> genes, involved in angiogenesis and inflammation mainly via nuclear factor-κB (NF-κB), decreased.</p><p><strong>Conclusions: </strong>The increased accumulation of cholesteryl ester in PBMC from patients with low HDL-C was suggested. This assumption contrasts with the suggested accumulation of free cholesterol in PBMC from patients with increased HDL-C, concomitant with suppression of cholesterol synthesis and traffic to the plasma membrane, and with an inflammatory state controlled by depressed CD36-mediated and upregulated apoE-mediated immunometabolic signaling. Gene signatures may be used for the diagnosis, prognosis, and treatment of CAD in dependence on HDL-C levels.</p>","PeriodicalId":73069,"journal":{"name":"Frontiers in bioscience (Landmark edition)","volume":"29 11","pages":"396"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Landmark edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.fbl2911396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The associations of high-density lipoprotein (HDL) level and functionality with lipid metabolism, inflammation, and innate immunity in coronary artery disease (CAD) remain controversial. The differential expression of a set of genes related to HDL metabolism (24 genes) and atherogenesis (41 genes) in peripheral blood mononuclear cells (PBMC) from CAD and control patients with varied HDL cholesterol (HDL-C) levels was compared.

Methods: 76 male patients 40-60 years old with CAD diagnosed by angiography and 63 control patients were divided into three groups with low, normal (1.0-1.4 mM), and increased HDL-C levels. Transcript levels were measured by real-time PCR. The differentially expressed genes (DEGs) and associated metabolic pathways were analyzed for three groups, with prevalent CAD as an outcome.

Results: The common feature was the increased odds ratio values for liver X receptor (LXR) gene expression for three patient groups. CAD patients with low HDL-C possessed 24 DEGs with lower expression of genes involved in cholesterol efflux, and down-regulated SREBF1 and ABCG1 are suggested as gene signatures. CAD patients with normal HDL-C possessed nine DEGs with down-regulated ITGAM and ALB as gene signatures. CAD patients with increased HDL-C possessed 19 DEGs with down-regulated APOA1 and HMGCR as gene signatures. With gene expression signatures, one standard deviation higher average gene expressions were associated with 5.1-, 48.8-, and 38.9-fold fewer CAD cases for three patient groups. As HDL-C increased in CAD patients, the expression of ABCG1, CUBN, and HDLBP genes increased, while the expression of HMGCR and NPC2 genes, involved in cholesterol synthesis and trafficking, decreased. The expression of CD14, CD36, S100A8, S100A9, S100A12, TLR5, TLR8, and VEGFA genes, involved in angiogenesis and inflammation mainly via nuclear factor-κB (NF-κB), decreased.

Conclusions: The increased accumulation of cholesteryl ester in PBMC from patients with low HDL-C was suggested. This assumption contrasts with the suggested accumulation of free cholesterol in PBMC from patients with increased HDL-C, concomitant with suppression of cholesterol synthesis and traffic to the plasma membrane, and with an inflammatory state controlled by depressed CD36-mediated and upregulated apoE-mediated immunometabolic signaling. Gene signatures may be used for the diagnosis, prognosis, and treatment of CAD in dependence on HDL-C levels.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信