Mingjun Du, Wenhan Wang, Shaoyuan Zhang, Jianmin Gu, Chunbing Zhang, Hai Zhang
{"title":"SENP1 Promotes Caspase-11 Inflammasome Activation and Aggravates Inflammatory Response in Murine Acute Lung Injury Induced by Lipopolysaccharide.","authors":"Mingjun Du, Wenhan Wang, Shaoyuan Zhang, Jianmin Gu, Chunbing Zhang, Hai Zhang","doi":"10.31083/j.fbl2911397","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Infection is the leading cause of acute lung injury (ALI). Macrophages, which are pivotal innate immune cells, play a critical role in mediating inflammatory processes. Intracellular lipopolysaccharide (LPS) from invasive Gram-negative bacteria can activate the caspase-11 inflammasome, leading to the induction of pyroptosis in macrophages. This process subsequently triggers the release of inflammatory cytokines and damage-associated molecular patterns from pyroptotic macrophages, thereby exacerbating inflammatory progression in ALI. However, the precise regulatory mechanisms governing caspase-11 activation is still unclear. Sentrin-specific proteases (SENPs) have been identified as notable targets for their anti-inflammatory properties. Nevertheless, the specific role of SENPs in macrophage pyroptosis during the pathogenesis of ALI remains unknown.</p><p><strong>Methods: </strong>We used LPS as an endotoxin to induce ALI. We analyzed the expression and location of sentrin-specific protease 1 (SENP1), pulmonary impairment, macrophage infiltration, caspase-11 inflammasome expression and activation, caspase-11 SUMOylation, and inflammatory cytokine secretion.</p><p><strong>Results: </strong>Upregulated expression of SENP1 in lung tissue and macrophages was observed following LPS stimulation. SENP1 mediates de-SUMOylation and activation of caspase-11 inflammasome in macrophages. Moreover, pharmacological inhibition or genetic deficiency of SENP1 in macrophages significantly improved ALI-related histological damage by reducing the secretion of inflammatory cytokines and suppressing caspase-11-dependent pyroptosis.</p><p><strong>Conclusions: </strong>Collectively, our findings highlight the involvement of SENP1 in caspase-11 activation and inflammatory progression in macrophages, thereby establishing a scientific foundation for the exploration of novel therapeutic strategies aimed at treating ALI.</p>","PeriodicalId":73069,"journal":{"name":"Frontiers in bioscience (Landmark edition)","volume":"29 11","pages":"397"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Landmark edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.fbl2911397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Infection is the leading cause of acute lung injury (ALI). Macrophages, which are pivotal innate immune cells, play a critical role in mediating inflammatory processes. Intracellular lipopolysaccharide (LPS) from invasive Gram-negative bacteria can activate the caspase-11 inflammasome, leading to the induction of pyroptosis in macrophages. This process subsequently triggers the release of inflammatory cytokines and damage-associated molecular patterns from pyroptotic macrophages, thereby exacerbating inflammatory progression in ALI. However, the precise regulatory mechanisms governing caspase-11 activation is still unclear. Sentrin-specific proteases (SENPs) have been identified as notable targets for their anti-inflammatory properties. Nevertheless, the specific role of SENPs in macrophage pyroptosis during the pathogenesis of ALI remains unknown.
Methods: We used LPS as an endotoxin to induce ALI. We analyzed the expression and location of sentrin-specific protease 1 (SENP1), pulmonary impairment, macrophage infiltration, caspase-11 inflammasome expression and activation, caspase-11 SUMOylation, and inflammatory cytokine secretion.
Results: Upregulated expression of SENP1 in lung tissue and macrophages was observed following LPS stimulation. SENP1 mediates de-SUMOylation and activation of caspase-11 inflammasome in macrophages. Moreover, pharmacological inhibition or genetic deficiency of SENP1 in macrophages significantly improved ALI-related histological damage by reducing the secretion of inflammatory cytokines and suppressing caspase-11-dependent pyroptosis.
Conclusions: Collectively, our findings highlight the involvement of SENP1 in caspase-11 activation and inflammatory progression in macrophages, thereby establishing a scientific foundation for the exploration of novel therapeutic strategies aimed at treating ALI.