{"title":"Analyzing Patient Experience on Weibo: Machine Learning Approach to Topic Modeling and Sentiment Analysis.","authors":"Xiao Chen, Zhiyun Shen, Tingyu Guan, Yuchen Tao, Yichen Kang, Yuxia Zhang","doi":"10.2196/59249","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Social media platforms allow individuals to openly gather, communicate, and share information about their interactions with health care services, becoming an essential supplemental means of understanding patient experience.</p><p><strong>Objective: </strong>We aimed to identify common discussion topics related to health care experience from the public's perspective and to determine areas of concern from patients' perspectives that health care providers should act on.</p><p><strong>Methods: </strong>This study conducted a spatiotemporal analysis of the volume, sentiment, and topic of patient experience-related posts on the Weibo platform developed by Sina Corporation. We applied a supervised machine learning approach including human annotation and machine learning-based models for topic modeling and sentiment analysis of the public discourse. A multiclassifier voting method based on logistic regression, multinomial naïve Bayes, and random forest was used.</p><p><strong>Results: </strong>A total of 4008 posts were manually classified into patient experience topics. A patient experience theme framework was developed. The accuracy, precision, recall, and F-measure of the method integrating logistic regression, multinomial naïve Bayes, and random forest for patient experience themes were 0.93, 0.95, 0.80, 0.77, and 0.84, respectively, indicating a satisfactory prediction. The sentiment analysis revealed that negative sentiment posts constituted the highest proportion (3319/4008, 82.81%). Twenty patient experience themes were discussed on the social media platform. The majority of the posts described the interpersonal aspects of care (2947/4008, 73.53%); the five most frequently discussed topics were \"health care professionals' attitude,\" \"access to care,\" \"communication, information, and education,\" \"technical competence,\" and \"efficacy of treatment.\"</p><p><strong>Conclusions: </strong>Hospital administrators and clinicians should consider the value of social media and pay attention to what patients and their family members are communicating on social media. To increase the utility of these data, a machine learning algorithm can be used for topic modeling. The results of this study highlighted the interpersonal and functional aspects of care, especially the interpersonal aspects, which are often the \"moment of truth\" during a service encounter in which patients make a critical evaluation of hospital services.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e59249"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623958/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/59249","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Social media platforms allow individuals to openly gather, communicate, and share information about their interactions with health care services, becoming an essential supplemental means of understanding patient experience.
Objective: We aimed to identify common discussion topics related to health care experience from the public's perspective and to determine areas of concern from patients' perspectives that health care providers should act on.
Methods: This study conducted a spatiotemporal analysis of the volume, sentiment, and topic of patient experience-related posts on the Weibo platform developed by Sina Corporation. We applied a supervised machine learning approach including human annotation and machine learning-based models for topic modeling and sentiment analysis of the public discourse. A multiclassifier voting method based on logistic regression, multinomial naïve Bayes, and random forest was used.
Results: A total of 4008 posts were manually classified into patient experience topics. A patient experience theme framework was developed. The accuracy, precision, recall, and F-measure of the method integrating logistic regression, multinomial naïve Bayes, and random forest for patient experience themes were 0.93, 0.95, 0.80, 0.77, and 0.84, respectively, indicating a satisfactory prediction. The sentiment analysis revealed that negative sentiment posts constituted the highest proportion (3319/4008, 82.81%). Twenty patient experience themes were discussed on the social media platform. The majority of the posts described the interpersonal aspects of care (2947/4008, 73.53%); the five most frequently discussed topics were "health care professionals' attitude," "access to care," "communication, information, and education," "technical competence," and "efficacy of treatment."
Conclusions: Hospital administrators and clinicians should consider the value of social media and pay attention to what patients and their family members are communicating on social media. To increase the utility of these data, a machine learning algorithm can be used for topic modeling. The results of this study highlighted the interpersonal and functional aspects of care, especially the interpersonal aspects, which are often the "moment of truth" during a service encounter in which patients make a critical evaluation of hospital services.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.