Vera Flasbeck, Fabian T Ramseyer, Manfred Schedlowski, Harald Engler, Martin Brüne
{"title":"Sick and detached: Does experimental inflammation impact on movement synchrony in humans?","authors":"Vera Flasbeck, Fabian T Ramseyer, Manfred Schedlowski, Harald Engler, Martin Brüne","doi":"10.1016/j.bbi.2024.11.028","DOIUrl":null,"url":null,"abstract":"<p><p>Interpersonal connectedness is a central feature of human interaction that can be compromised during illness. Nonverbal signals play a crucial role in this context, and humans, like other animals, have evolved a behavioral immune system that enables individuals to detect subtle cues of sickness in others. Conversely, sick individuals often tend to avoid social interaction, a key component of sickness behavior. The coordination of body movements between two individuals (movement synchrony) is a measure of the quality of relationships that could provide insight into an interlocutor's sickness state. In the present study, we explored the effect lipopolysaccharide (LPS) administration, a naturalistic stimulus for inflammation-induced sickness, on movement synchrony in healthy volunteers randomly assigned to a double-blind interview with a non-treated interviewer conducted 2.5 h after intravenous injection of either LPS (n = 26) or placebo (n = 25). Movement synchrony was assessed by automated video analysis of subject's and interviewer's head movements. Lagged cross-correlations were used to objectively quantify coordination in dyads and to assess patterns of temporal movement-synchronization. Data analysis revealed that dyads with subjects under placebo displayed a pattern of movement coordination comparable to that seen in previous studies. However, dyads with subjects under LPS showed a loss of simultaneous movement (i.e. moving at the same time) with the interview partner, which is normally the temporal domain providing the highest level of synchrony. Together, the findings suggest that immediate social interaction is attenuated when one interlocutor is exposed to systemic inflammation, while the other is unaffected. This effect can be attributed to both sickness behavior on one hand and correlates of the behavioral immune system on the other hand.</p>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":" ","pages":""},"PeriodicalIF":8.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bbi.2024.11.028","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Interpersonal connectedness is a central feature of human interaction that can be compromised during illness. Nonverbal signals play a crucial role in this context, and humans, like other animals, have evolved a behavioral immune system that enables individuals to detect subtle cues of sickness in others. Conversely, sick individuals often tend to avoid social interaction, a key component of sickness behavior. The coordination of body movements between two individuals (movement synchrony) is a measure of the quality of relationships that could provide insight into an interlocutor's sickness state. In the present study, we explored the effect lipopolysaccharide (LPS) administration, a naturalistic stimulus for inflammation-induced sickness, on movement synchrony in healthy volunteers randomly assigned to a double-blind interview with a non-treated interviewer conducted 2.5 h after intravenous injection of either LPS (n = 26) or placebo (n = 25). Movement synchrony was assessed by automated video analysis of subject's and interviewer's head movements. Lagged cross-correlations were used to objectively quantify coordination in dyads and to assess patterns of temporal movement-synchronization. Data analysis revealed that dyads with subjects under placebo displayed a pattern of movement coordination comparable to that seen in previous studies. However, dyads with subjects under LPS showed a loss of simultaneous movement (i.e. moving at the same time) with the interview partner, which is normally the temporal domain providing the highest level of synchrony. Together, the findings suggest that immediate social interaction is attenuated when one interlocutor is exposed to systemic inflammation, while the other is unaffected. This effect can be attributed to both sickness behavior on one hand and correlates of the behavioral immune system on the other hand.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.