Head-on Collision of Ion Acoustic Waves in Electron-Ion-Positron Plasmas with Trapped-Distributed Electrons

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Alireza Abdikian, Uday Narayan Ghosh, Mohamad Eghbali
{"title":"Head-on Collision of Ion Acoustic Waves in Electron-Ion-Positron Plasmas with Trapped-Distributed Electrons","authors":"Alireza Abdikian,&nbsp;Uday Narayan Ghosh,&nbsp;Mohamad Eghbali","doi":"10.1007/s13538-024-01662-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the head-on collision of ion-acoustic solitons in a one-dimensional, hot, collisionless electron-positron-ion (e-p-i) plasma, incorporating mobile ions, <span>\\(\\kappa \\)</span>-distributed trapped electrons, and Maxwellian positrons. Using the modified Poincare-Lighthill-Kuo (PLK) method, we derive modified Korteweg-de Vries (mKdV) equations and analyze phase shifts in soliton trajectories post-interaction. Results reveal that only rarefactive electrostatic nonlinear waves can propagate within the range of parameters relevant to experiments, showing symmetrical soliton behavior during head-on collisions, with identical amplitude and width. Additionally, soliton amplitude is found to decrease as the electron spectral index (<span>\\(\\kappa _e\\)</span>) and positron-to-electron temperature ratio (<span>\\(\\beta _e\\)</span>) increase, with a sharp decline observed within the range <span>\\(0&lt;\\kappa _e&lt;5\\)</span>. Phase shift analysis shows that smaller <span>\\(\\kappa _e\\)</span> values result in a steady increase in phase shifts, which becomes asymptotic as <span>\\(\\kappa _e\\)</span> grows, while phase shifts decrease with rising <span>\\(\\sigma _i\\)</span> (temperature ratio of ions to electrons). These results have practical applications in astrophysical and laboratory plasma environments where soliton interactions play a crucial role. Understanding head-on soliton collisions helps predict plasma behavior in environments such as the interstellar medium, fusion devices, and space plasmas, where wave stability, energy transport, and plasma heating are influenced by nonlinear interactions in systems with trapped particles and nonthermal distributions.</p></div>","PeriodicalId":499,"journal":{"name":"Brazilian Journal of Physics","volume":"55 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s13538-024-01662-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the head-on collision of ion-acoustic solitons in a one-dimensional, hot, collisionless electron-positron-ion (e-p-i) plasma, incorporating mobile ions, \(\kappa \)-distributed trapped electrons, and Maxwellian positrons. Using the modified Poincare-Lighthill-Kuo (PLK) method, we derive modified Korteweg-de Vries (mKdV) equations and analyze phase shifts in soliton trajectories post-interaction. Results reveal that only rarefactive electrostatic nonlinear waves can propagate within the range of parameters relevant to experiments, showing symmetrical soliton behavior during head-on collisions, with identical amplitude and width. Additionally, soliton amplitude is found to decrease as the electron spectral index (\(\kappa _e\)) and positron-to-electron temperature ratio (\(\beta _e\)) increase, with a sharp decline observed within the range \(0<\kappa _e<5\). Phase shift analysis shows that smaller \(\kappa _e\) values result in a steady increase in phase shifts, which becomes asymptotic as \(\kappa _e\) grows, while phase shifts decrease with rising \(\sigma _i\) (temperature ratio of ions to electrons). These results have practical applications in astrophysical and laboratory plasma environments where soliton interactions play a crucial role. Understanding head-on soliton collisions helps predict plasma behavior in environments such as the interstellar medium, fusion devices, and space plasmas, where wave stability, energy transport, and plasma heating are influenced by nonlinear interactions in systems with trapped particles and nonthermal distributions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Brazilian Journal of Physics
Brazilian Journal of Physics 物理-物理:综合
CiteScore
2.50
自引率
6.20%
发文量
189
审稿时长
6.0 months
期刊介绍: The Brazilian Journal of Physics is a peer-reviewed international journal published by the Brazilian Physical Society (SBF). The journal publishes new and original research results from all areas of physics, obtained in Brazil and from anywhere else in the world. Contents include theoretical, practical and experimental papers as well as high-quality review papers. Submissions should follow the generally accepted structure for journal articles with basic elements: title, abstract, introduction, results, conclusions, and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信