Zhongjia Chen, Shaogang Xu, Zijuan Xie, Hu Xu, Hongming Weng
{"title":"Intrinsic second-order topological insulators in two-dimensional polymorphic graphyne with sublattice approximation","authors":"Zhongjia Chen, Shaogang Xu, Zijuan Xie, Hu Xu, Hongming Weng","doi":"10.1038/s41535-024-00710-x","DOIUrl":null,"url":null,"abstract":"<p>In two dimensions, intrinsic second-order topological insulators (SOTIs) are characterized by topological corner states that emerge at the intersections of distinct edges with reversed mass signs, enforced by spatial symmetries. Here, we present a comprehensive investigation within the class BDI to clarify the symmetry conditions ensuring the presence of intrinsic SOTIs in two dimensions. We reveal that the (anti-)commutation relationship between spatial symmetries and chiral symmetry is a reliable indicator of intrinsic corner states. Through first-principles calculations, we identify several ideal candidates within carbon-based polymorphic graphyne structures for realizing intrinsic SOTIs under sublattice approximation. Furthermore, we show that the corner states in these materials persist even in the absence of sublattice approximation. Our findings not only deepen the understanding of higher-order topological phases but also open new pathways for realizing topological corner states that are readily observable.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"116 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00710-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In two dimensions, intrinsic second-order topological insulators (SOTIs) are characterized by topological corner states that emerge at the intersections of distinct edges with reversed mass signs, enforced by spatial symmetries. Here, we present a comprehensive investigation within the class BDI to clarify the symmetry conditions ensuring the presence of intrinsic SOTIs in two dimensions. We reveal that the (anti-)commutation relationship between spatial symmetries and chiral symmetry is a reliable indicator of intrinsic corner states. Through first-principles calculations, we identify several ideal candidates within carbon-based polymorphic graphyne structures for realizing intrinsic SOTIs under sublattice approximation. Furthermore, we show that the corner states in these materials persist even in the absence of sublattice approximation. Our findings not only deepen the understanding of higher-order topological phases but also open new pathways for realizing topological corner states that are readily observable.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.