Mechanisms and cross-talk of regulated cell death and their epigenetic modifications in tumor progression

IF 27.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ruimin He, Yifan Liu, Weijie Fu, Xuan He, Shuang Liu, Desheng Xiao, Yongguang Tao
{"title":"Mechanisms and cross-talk of regulated cell death and their epigenetic modifications in tumor progression","authors":"Ruimin He, Yifan Liu, Weijie Fu, Xuan He, Shuang Liu, Desheng Xiao, Yongguang Tao","doi":"10.1186/s12943-024-02172-y","DOIUrl":null,"url":null,"abstract":"Cell death is a fundamental part of life for metazoans. To maintain the balance between cell proliferation and metabolism of human bodies, a certain number of cells need to be removed regularly. Hence, the mechanisms of cell death have been preserved during the evolution of multicellular organisms. Tumorigenesis is closely related with exceptional inhibition of cell death. Mutations or defects in cell death-related genes block the elimination of abnormal cells and enhance the resistance of malignant cells to chemotherapy. Therefore, the investigation of cell death mechanisms enables the development of drugs that directly induce tumor cell death. In the guidelines updated by the Cell Death Nomenclature Committee (NCCD) in 2018, cell death was classified into 12 types according to morphological, biochemical and functional classification, including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, PARP-1 parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence and mitotic catastrophe. The mechanistic relationships between epigenetic controls and cell death in cancer progression were previously unclear. In this review, we will summarize the mechanisms of cell death pathways and corresponding epigenetic regulations. Also, we will explore the extensive interactions between these pathways and discuss the mechanisms of cell death in epigenetics which bring benefits to tumor therapy.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"260 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-024-02172-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell death is a fundamental part of life for metazoans. To maintain the balance between cell proliferation and metabolism of human bodies, a certain number of cells need to be removed regularly. Hence, the mechanisms of cell death have been preserved during the evolution of multicellular organisms. Tumorigenesis is closely related with exceptional inhibition of cell death. Mutations or defects in cell death-related genes block the elimination of abnormal cells and enhance the resistance of malignant cells to chemotherapy. Therefore, the investigation of cell death mechanisms enables the development of drugs that directly induce tumor cell death. In the guidelines updated by the Cell Death Nomenclature Committee (NCCD) in 2018, cell death was classified into 12 types according to morphological, biochemical and functional classification, including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, PARP-1 parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence and mitotic catastrophe. The mechanistic relationships between epigenetic controls and cell death in cancer progression were previously unclear. In this review, we will summarize the mechanisms of cell death pathways and corresponding epigenetic regulations. Also, we will explore the extensive interactions between these pathways and discuss the mechanisms of cell death in epigenetics which bring benefits to tumor therapy.
调控细胞死亡及其表观遗传修饰在肿瘤进展中的机制和串扰
细胞死亡是后生动物生命的基本组成部分。为了维持人体细胞增殖和新陈代谢之间的平衡,需要定期清除一定数量的细胞。因此,在多细胞生物的进化过程中,细胞死亡的机制被保留了下来。肿瘤的发生与细胞死亡的异常抑制密切相关。细胞死亡相关基因的突变或缺陷阻断了异常细胞的清除,增强了恶性细胞对化疗的抵抗力。因此,对细胞死亡机制的研究有助于开发直接诱导肿瘤细胞死亡的药物。在细胞死亡命名委员会(NCCD) 2018年更新的指南中,根据形态学、生化和功能分类,将细胞死亡分为12种类型,包括内源性凋亡、外源性凋亡、线粒体通透性转变(MPT)驱动的坏死、坏死坏死、铁性坏死、焦性坏死、PARP-1旁thanatos、内源性细胞死亡、NETotic细胞死亡、溶酶体依赖性细胞死亡、自噬依赖性细胞死亡、免疫原性细胞死亡、细胞衰老和有丝分裂灾难。在癌症进展过程中,表观遗传控制和细胞死亡之间的机制关系以前并不清楚。在这篇综述中,我们将概述细胞死亡途径的机制和相应的表观遗传调控。此外,我们将探讨这些途径之间广泛的相互作用,并讨论细胞死亡在表观遗传学上的机制,为肿瘤治疗带来好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Cancer
Molecular Cancer 医学-生化与分子生物学
CiteScore
54.90
自引率
2.70%
发文量
224
审稿时长
2 months
期刊介绍: Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer. The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies. Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信