Georgios Valogiannis, Francisco Villaescusa-Navarro and Marco Baldi
{"title":"Towards unveiling the large-scale nature of gravity with the wavelet scattering transform","authors":"Georgios Valogiannis, Francisco Villaescusa-Navarro and Marco Baldi","doi":"10.1088/1475-7516/2024/11/061","DOIUrl":null,"url":null,"abstract":"We present the first application of the Wavelet Scattering Transform (WST) in order to constrain the nature of gravity using the three-dimensional (3D) large-scale structure of the universe. Utilizing the Quijote-MG N-body simulations, we can reliably model the 3D matter overdensity field for the f(R) Hu-Sawicki modified gravity (MG) model down to kmax = 0.5 h/Mpc. Combining these simulations with the QuijoteνCDM collection, we then conduct a Fisher forecast of the marginalized constraints obtained on gravity using the WST coefficients and the matter power spectrum at redshift z=0. Our results demonstrate that the WST substantially improves upon the 1σ error obtained on the parameter that captures deviations from standard General Relativity (GR), yielding a tenfold improvement compared to the corresponding matter power spectrum result. At the same time, the WST also enhances the precision on the ΛCDM parameters and the sum of neutrino masses, by factors of 1.2-3.4 compared to the matter power spectrum, respectively. Despite the overall reduction in the WST performance when we focus on larger scales, it still provides a relatively 4.5× tighter 1σ error for the MG parameter at kmax =0.2 h/Mpc, highlighting its great sensitivity to the underlying gravity theory. This first proof-of-concept study reaffirms the constraining properties of the WST technique and paves the way for exciting future applications in order to perform precise large-scale tests of gravity with the new generation of cutting-edge cosmological data.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"69 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/11/061","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present the first application of the Wavelet Scattering Transform (WST) in order to constrain the nature of gravity using the three-dimensional (3D) large-scale structure of the universe. Utilizing the Quijote-MG N-body simulations, we can reliably model the 3D matter overdensity field for the f(R) Hu-Sawicki modified gravity (MG) model down to kmax = 0.5 h/Mpc. Combining these simulations with the QuijoteνCDM collection, we then conduct a Fisher forecast of the marginalized constraints obtained on gravity using the WST coefficients and the matter power spectrum at redshift z=0. Our results demonstrate that the WST substantially improves upon the 1σ error obtained on the parameter that captures deviations from standard General Relativity (GR), yielding a tenfold improvement compared to the corresponding matter power spectrum result. At the same time, the WST also enhances the precision on the ΛCDM parameters and the sum of neutrino masses, by factors of 1.2-3.4 compared to the matter power spectrum, respectively. Despite the overall reduction in the WST performance when we focus on larger scales, it still provides a relatively 4.5× tighter 1σ error for the MG parameter at kmax =0.2 h/Mpc, highlighting its great sensitivity to the underlying gravity theory. This first proof-of-concept study reaffirms the constraining properties of the WST technique and paves the way for exciting future applications in order to perform precise large-scale tests of gravity with the new generation of cutting-edge cosmological data.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.