Eco-Evolutionary Drivers of Vibrio parahaemolyticus Sequence Type 3 Expansion: Retrospective Machine Learning Approach.

Amy Marie Campbell, Chris Hauton, Ronny van Aerle, Jaime Martinez-Urtaza
{"title":"Eco-Evolutionary Drivers of Vibrio parahaemolyticus Sequence Type 3 Expansion: Retrospective Machine Learning Approach.","authors":"Amy Marie Campbell, Chris Hauton, Ronny van Aerle, Jaime Martinez-Urtaza","doi":"10.2196/62747","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Environmentally sensitive pathogens exhibit ecological and evolutionary responses to climate change that result in the emergence and global expansion of well-adapted variants. It is imperative to understand the mechanisms that facilitate pathogen emergence and expansion, as well as the drivers behind the mechanisms, to understand and prepare for future pandemic expansions.</p><p><strong>Objective: </strong>The unique, rapid, global expansion of a clonal complex of Vibrio parahaemolyticus (a marine bacterium causing gastroenteritis infections) named Vibrio parahaemolyticus sequence type 3 (VpST3) provides an opportunity to explore the eco-evolutionary drivers of pathogen expansion.</p><p><strong>Methods: </strong>The global expansion of VpST3 was reconstructed using VpST3 genomes, which were then classified into metrics characterizing the stages of this expansion process, indicative of the stages of emergence and establishment. We used machine learning, specifically a random forest classifier, to test a range of ecological and evolutionary drivers for their potential in predicting VpST3 expansion dynamics.</p><p><strong>Results: </strong>We identified a range of evolutionary features, including mutations in the core genome and accessory gene presence, associated with expansion dynamics. A range of random forest classifier approaches were tested to predict expansion classification metrics for each genome. The highest predictive accuracies (ranging from 0.722 to 0.967) were achieved for models using a combined eco-evolutionary approach. While population structure and the difference between introduced and established isolates could be predicted to a high accuracy, our model reported multiple false positives when predicting the success of an introduced isolate, suggesting potential limiting factors not represented in our eco-evolutionary features. Regional models produced for 2 countries reporting the most VpST3 genomes had varying success, reflecting the impacts of class imbalance.</p><p><strong>Conclusions: </strong>These novel insights into evolutionary features and ecological conditions related to the stages of VpST3 expansion showcase the potential of machine learning models using genomic data and will contribute to the future understanding of the eco-evolutionary pathways of climate-sensitive pathogens.</p>","PeriodicalId":73552,"journal":{"name":"JMIR bioinformatics and biotechnology","volume":"5 ","pages":"e62747"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638695/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR bioinformatics and biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/62747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Environmentally sensitive pathogens exhibit ecological and evolutionary responses to climate change that result in the emergence and global expansion of well-adapted variants. It is imperative to understand the mechanisms that facilitate pathogen emergence and expansion, as well as the drivers behind the mechanisms, to understand and prepare for future pandemic expansions.

Objective: The unique, rapid, global expansion of a clonal complex of Vibrio parahaemolyticus (a marine bacterium causing gastroenteritis infections) named Vibrio parahaemolyticus sequence type 3 (VpST3) provides an opportunity to explore the eco-evolutionary drivers of pathogen expansion.

Methods: The global expansion of VpST3 was reconstructed using VpST3 genomes, which were then classified into metrics characterizing the stages of this expansion process, indicative of the stages of emergence and establishment. We used machine learning, specifically a random forest classifier, to test a range of ecological and evolutionary drivers for their potential in predicting VpST3 expansion dynamics.

Results: We identified a range of evolutionary features, including mutations in the core genome and accessory gene presence, associated with expansion dynamics. A range of random forest classifier approaches were tested to predict expansion classification metrics for each genome. The highest predictive accuracies (ranging from 0.722 to 0.967) were achieved for models using a combined eco-evolutionary approach. While population structure and the difference between introduced and established isolates could be predicted to a high accuracy, our model reported multiple false positives when predicting the success of an introduced isolate, suggesting potential limiting factors not represented in our eco-evolutionary features. Regional models produced for 2 countries reporting the most VpST3 genomes had varying success, reflecting the impacts of class imbalance.

Conclusions: These novel insights into evolutionary features and ecological conditions related to the stages of VpST3 expansion showcase the potential of machine learning models using genomic data and will contribute to the future understanding of the eco-evolutionary pathways of climate-sensitive pathogens.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信