{"title":"GPNMB is a novel binding partner of FGFR1 that affects tumorigenic potential through AKT phosphorylation in TNBC.","authors":"Manar A Elhinnawi, Yukari Okita, Katsunobu Shigematsu, Mohammed Abdelaziz, Rie Shiratani, Kunio Kawanishi, Kowit Hengphasatporn, Thuy Linh Dang Cao, Yasuteru Shigeta, Mitsuyasu Kato","doi":"10.1111/cas.16419","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is a heterogeneous disease and is one of the most prevalent cancers in women. Triple-negative breast cancer (TNBC) is a relatively aggressive subtype of breast cancer, which is difficult to treat. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type I transmembrane protein that is overexpressed in various types of cancers, including breast cancer, especially TNBC. In this study, bioinformatic analyses revealed enhanced fibroblast growth factor receptor 1 (FGFR1) signaling in patients with invasive breast cancer, and the GPNMB<sup>high</sup>/FGFR1<sup>high</sup> group exhibited a lower probability of relapse-free survival (RFS) than the GPNMB<sup>low</sup>/FGFR1<sup>low</sup> group. Additionally, we observed that GPNMB and FGFR1 were essential for sphere formation, cellular migration, and epithelial-mesenchymal transition (EMT)-like changes in TNBC cells. To explore the mutual interaction between these two molecules, we conducted in silico protein-protein docking studies and molecular dynamics simulations. The results revealed that GPNMB isoform b exhibits high binding affinity for FGFR1 isoform c (FGFR1c), which correlates with cancer aggressiveness. We also confirmed the interaction between GPNMB and FGFR1 in TNBC cells. Furthermore, our study demonstrated that GPNMB is essential for AKT phosphorylation at T308 following FGF2 stimulation, resulting in high affinity for FGFR1c. Inhibition of AKT phosphorylation substantially reduces the tumorigenic potential of TNBC cells.</p>","PeriodicalId":48943,"journal":{"name":"Cancer Science","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/cas.16419","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is a heterogeneous disease and is one of the most prevalent cancers in women. Triple-negative breast cancer (TNBC) is a relatively aggressive subtype of breast cancer, which is difficult to treat. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type I transmembrane protein that is overexpressed in various types of cancers, including breast cancer, especially TNBC. In this study, bioinformatic analyses revealed enhanced fibroblast growth factor receptor 1 (FGFR1) signaling in patients with invasive breast cancer, and the GPNMBhigh/FGFR1high group exhibited a lower probability of relapse-free survival (RFS) than the GPNMBlow/FGFR1low group. Additionally, we observed that GPNMB and FGFR1 were essential for sphere formation, cellular migration, and epithelial-mesenchymal transition (EMT)-like changes in TNBC cells. To explore the mutual interaction between these two molecules, we conducted in silico protein-protein docking studies and molecular dynamics simulations. The results revealed that GPNMB isoform b exhibits high binding affinity for FGFR1 isoform c (FGFR1c), which correlates with cancer aggressiveness. We also confirmed the interaction between GPNMB and FGFR1 in TNBC cells. Furthermore, our study demonstrated that GPNMB is essential for AKT phosphorylation at T308 following FGF2 stimulation, resulting in high affinity for FGFR1c. Inhibition of AKT phosphorylation substantially reduces the tumorigenic potential of TNBC cells.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.