CorLabelNet: a comprehensive framework for multi-label chest X-ray image classification with correlation guided discriminant feature learning and oversampling.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Kai Zhang, Wei Liang, Peng Cao, Zhaoyang Mao, Jinzhu Yang, Osmar R Zaiane
{"title":"CorLabelNet: a comprehensive framework for multi-label chest X-ray image classification with correlation guided discriminant feature learning and oversampling.","authors":"Kai Zhang, Wei Liang, Peng Cao, Zhaoyang Mao, Jinzhu Yang, Osmar R Zaiane","doi":"10.1007/s11517-024-03247-0","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in deep learning techniques have significantly improved multi-label chest X-ray (CXR) image classification for clinical diagnosis. However, most previous studies neither effectively learn label correlations nor take full advantage of them to improve multi-label classification performance. In addition, different labels of CXR images are usually severely imbalanced, resulting in the model exhibiting a bias towards the majority class. To address these challenges, we introduce a framework that not only learns label correlations but also utilizes them to guide the learning of features and the process of oversampling. In this paper, our approach incorporates self-attention to capture high-order label correlations and considers label correlations from both global and local perspectives. Then, we propose a consistency constraint and a multi-label contrastive loss to enhance feature learning. To alleviate the imbalance issue, we further propose an oversampling approach that exploits the learned label correlation to identify crucial seed samples for oversampling. Our approach repeats 5-fold cross-validation process experiments three times and achieves the best performance on both the CheXpert and ChestX-Ray14 datasets. Learning accurate label correlation is significant for multi-label classification and taking full advantage of label correlations is beneficial for discriminative feature learning and oversampling. A comparative analysis with the state-of-the-art approaches highlights the effectiveness of our proposed methods.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03247-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in deep learning techniques have significantly improved multi-label chest X-ray (CXR) image classification for clinical diagnosis. However, most previous studies neither effectively learn label correlations nor take full advantage of them to improve multi-label classification performance. In addition, different labels of CXR images are usually severely imbalanced, resulting in the model exhibiting a bias towards the majority class. To address these challenges, we introduce a framework that not only learns label correlations but also utilizes them to guide the learning of features and the process of oversampling. In this paper, our approach incorporates self-attention to capture high-order label correlations and considers label correlations from both global and local perspectives. Then, we propose a consistency constraint and a multi-label contrastive loss to enhance feature learning. To alleviate the imbalance issue, we further propose an oversampling approach that exploits the learned label correlation to identify crucial seed samples for oversampling. Our approach repeats 5-fold cross-validation process experiments three times and achieves the best performance on both the CheXpert and ChestX-Ray14 datasets. Learning accurate label correlation is significant for multi-label classification and taking full advantage of label correlations is beneficial for discriminative feature learning and oversampling. A comparative analysis with the state-of-the-art approaches highlights the effectiveness of our proposed methods.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信