CorLabelNet: a comprehensive framework for multi-label chest X-ray image classification with correlation guided discriminant feature learning and oversampling.
IF 2.6 4区 医学Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Kai Zhang, Wei Liang, Peng Cao, Zhaoyang Mao, Jinzhu Yang, Osmar R Zaiane
{"title":"CorLabelNet: a comprehensive framework for multi-label chest X-ray image classification with correlation guided discriminant feature learning and oversampling.","authors":"Kai Zhang, Wei Liang, Peng Cao, Zhaoyang Mao, Jinzhu Yang, Osmar R Zaiane","doi":"10.1007/s11517-024-03247-0","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in deep learning techniques have significantly improved multi-label chest X-ray (CXR) image classification for clinical diagnosis. However, most previous studies neither effectively learn label correlations nor take full advantage of them to improve multi-label classification performance. In addition, different labels of CXR images are usually severely imbalanced, resulting in the model exhibiting a bias towards the majority class. To address these challenges, we introduce a framework that not only learns label correlations but also utilizes them to guide the learning of features and the process of oversampling. In this paper, our approach incorporates self-attention to capture high-order label correlations and considers label correlations from both global and local perspectives. Then, we propose a consistency constraint and a multi-label contrastive loss to enhance feature learning. To alleviate the imbalance issue, we further propose an oversampling approach that exploits the learned label correlation to identify crucial seed samples for oversampling. Our approach repeats 5-fold cross-validation process experiments three times and achieves the best performance on both the CheXpert and ChestX-Ray14 datasets. Learning accurate label correlation is significant for multi-label classification and taking full advantage of label correlations is beneficial for discriminative feature learning and oversampling. A comparative analysis with the state-of-the-art approaches highlights the effectiveness of our proposed methods.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03247-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in deep learning techniques have significantly improved multi-label chest X-ray (CXR) image classification for clinical diagnosis. However, most previous studies neither effectively learn label correlations nor take full advantage of them to improve multi-label classification performance. In addition, different labels of CXR images are usually severely imbalanced, resulting in the model exhibiting a bias towards the majority class. To address these challenges, we introduce a framework that not only learns label correlations but also utilizes them to guide the learning of features and the process of oversampling. In this paper, our approach incorporates self-attention to capture high-order label correlations and considers label correlations from both global and local perspectives. Then, we propose a consistency constraint and a multi-label contrastive loss to enhance feature learning. To alleviate the imbalance issue, we further propose an oversampling approach that exploits the learned label correlation to identify crucial seed samples for oversampling. Our approach repeats 5-fold cross-validation process experiments three times and achieves the best performance on both the CheXpert and ChestX-Ray14 datasets. Learning accurate label correlation is significant for multi-label classification and taking full advantage of label correlations is beneficial for discriminative feature learning and oversampling. A comparative analysis with the state-of-the-art approaches highlights the effectiveness of our proposed methods.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).