SkyMap: a generative graph model for GNN benchmarking.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2024-11-14 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1427534
Axel Wassington, Raúl Higueras, Sergi Abadal
{"title":"SkyMap: a generative graph model for GNN benchmarking.","authors":"Axel Wassington, Raúl Higueras, Sergi Abadal","doi":"10.3389/frai.2024.1427534","DOIUrl":null,"url":null,"abstract":"<p><p>Graph Neural Networks (GNNs) have gained considerable attention in recent years. Despite the surge in innovative GNN architecture designs, research heavily relies on the same 5-10 benchmark datasets for validation. To address this limitation, several generative graph models like ALBTER or GenCAT have emerged, aiming to fix this problem with synthetic graph datasets. However, these models often struggle to mirror the GNN performance of the original graphs. In this work, we present SkyMap, a generative model for labeled attributed graphs with a fine-grained control over graph topology and feature distribution parameters. We show that our model is able to consistently replicate the learnability of graphs on graph convolutional, attention, and isomorphism networks better (64% lower Wasserstein distance) than ALBTER and GenCAT. Further, we prove that by randomly sampling the input parameters of SkyMap, graph dataset constellations can be created that cover a large parametric space, hence making a significant stride in crafting synthetic datasets tailored for GNN evaluation and benchmarking, as we illustrate through a performance comparison between a GNN and a multilayer perceptron.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1427534"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602517/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1427534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Graph Neural Networks (GNNs) have gained considerable attention in recent years. Despite the surge in innovative GNN architecture designs, research heavily relies on the same 5-10 benchmark datasets for validation. To address this limitation, several generative graph models like ALBTER or GenCAT have emerged, aiming to fix this problem with synthetic graph datasets. However, these models often struggle to mirror the GNN performance of the original graphs. In this work, we present SkyMap, a generative model for labeled attributed graphs with a fine-grained control over graph topology and feature distribution parameters. We show that our model is able to consistently replicate the learnability of graphs on graph convolutional, attention, and isomorphism networks better (64% lower Wasserstein distance) than ALBTER and GenCAT. Further, we prove that by randomly sampling the input parameters of SkyMap, graph dataset constellations can be created that cover a large parametric space, hence making a significant stride in crafting synthetic datasets tailored for GNN evaluation and benchmarking, as we illustrate through a performance comparison between a GNN and a multilayer perceptron.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信