Comparative study of machine learning techniques for post-combustion carbon capture systems.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2024-11-14 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1441934
Yeping Hu, Bo Lei, Yash Girish Shah, Jose Cadena, Amar Saini, Grigorios Panagakos, Phan Nguyen
{"title":"Comparative study of machine learning techniques for post-combustion carbon capture systems.","authors":"Yeping Hu, Bo Lei, Yash Girish Shah, Jose Cadena, Amar Saini, Grigorios Panagakos, Phan Nguyen","doi":"10.3389/frai.2024.1441934","DOIUrl":null,"url":null,"abstract":"<p><p>Computational analysis of countercurrent flows in packed absorption columns, often used in solvent-based post-combustion carbon capture systems (CCSs), is challenging. Typically, computational fluid dynamics (CFD) approaches are used to simulate the interactions between a solvent, gas, and column's packing geometry while accounting for the thermodynamics, kinetics, heat, and mass transfer effects of the absorption process. These simulations can then be used explain a column's hydrodynamic characteristics and evaluate its CO<sub>2</sub>-capture efficiency. However, these approaches are computationally expensive, making it difficult to evaluate numerous designs and operating conditions to improve efficiency at industrial scales. In this work, we comprehensively explore the application of statistical ML methods, convolutional neural networks (CNNs), and graph neural networks (GNNs) to aid and accelerate the scale-up and design optimization of solvent-based post-combustion CCSs. We apply these methods to CFD datasets of countercurrent flows in absorption columns with structured packings characterized by several geometric parameters. We train models to use these parameters, inlet velocity conditions, and other model-specific representations of the column to estimate key determinants of CO<sub>2</sub>-capture efficiency without having to simulate additional CFD datasets. We also evaluate the impact of different input types on the accuracy and generalizability of each model. We discuss the strengths and limitations of each approach to further elucidate the role of CNNs, GNNs, and other machine learning approaches for CO<sub>2</sub>-capture property prediction and design optimization.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1441934"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603113/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1441934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Computational analysis of countercurrent flows in packed absorption columns, often used in solvent-based post-combustion carbon capture systems (CCSs), is challenging. Typically, computational fluid dynamics (CFD) approaches are used to simulate the interactions between a solvent, gas, and column's packing geometry while accounting for the thermodynamics, kinetics, heat, and mass transfer effects of the absorption process. These simulations can then be used explain a column's hydrodynamic characteristics and evaluate its CO2-capture efficiency. However, these approaches are computationally expensive, making it difficult to evaluate numerous designs and operating conditions to improve efficiency at industrial scales. In this work, we comprehensively explore the application of statistical ML methods, convolutional neural networks (CNNs), and graph neural networks (GNNs) to aid and accelerate the scale-up and design optimization of solvent-based post-combustion CCSs. We apply these methods to CFD datasets of countercurrent flows in absorption columns with structured packings characterized by several geometric parameters. We train models to use these parameters, inlet velocity conditions, and other model-specific representations of the column to estimate key determinants of CO2-capture efficiency without having to simulate additional CFD datasets. We also evaluate the impact of different input types on the accuracy and generalizability of each model. We discuss the strengths and limitations of each approach to further elucidate the role of CNNs, GNNs, and other machine learning approaches for CO2-capture property prediction and design optimization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信