Purinergic P2Y1 and P2Y12 receptors control enteric nervous system activity through neuro-glia-macrophage crosstalk.

IF 3 4区 医学 Q2 NEUROSCIENCES
Blake J Hendler, Jonathon L McClain, Aurora Zilli, Luisa Seguella, Brian D Gulbransen
{"title":"Purinergic P2Y<sub>1</sub> and P2Y<sub>12</sub> receptors control enteric nervous system activity through neuro-glia-macrophage crosstalk.","authors":"Blake J Hendler, Jonathon L McClain, Aurora Zilli, Luisa Seguella, Brian D Gulbransen","doi":"10.1007/s11302-024-10060-9","DOIUrl":null,"url":null,"abstract":"<p><p>Purines are important mediators of intercellular communication in the enteric nervous system (ENS) that participate in physiological gut functions and disease. Purinergic transmission is prominent in mechanisms of crosstalk between enteric neurons and glia where enteric glia exhibit high responsiveness to adenosine diphosphate (ADP) through P2Y<sub>1</sub> receptors and neurons to adenosine triphosphate (ATP) through P2X<sub>3</sub> receptors. Despite functional data suggesting that enteric glia are the primary site of P2Y<sub>1</sub> expression in the ENS, gene sequencing suggests that P2Y<sub>1</sub> expression is more enriched in neurons than glia. The reason for the mismatch between genomic and functional data is unclear but could involve co-expression of inhibitory P2Y<sub>12</sub> receptors in neurons. We addressed this issue by studying the expression and function of P2Y<sub>1</sub> and P2Y<sub>12</sub> receptors in the mouse ENS using live immunolabeling and calcium imaging techniques. The data show that ADP drives activity among enteric glia and neurons in the myenteric plexus. Interestingly, inhibiting P2Y<sub>12</sub> activity increased neuron responses to ADP and overall spontaneous activity among enteric neurons and glia while decreasing the magnitude of glial responses to ADP. Investigating the location of the receptors involved revealed P2Y<sub>1</sub> receptor expression by both neurons and glia, while P2Y<sub>12</sub> receptor expression was minimal in the ENS. Instead, P2Y<sub>12</sub> expression was enriched in the surrounding muscularis macrophages. Macrophages positive for P2Y<sub>12</sub> overlapped with CD163 positive subsets that have known inhibitory influences over myenteric neurocircuits. Together, these data suggest that macrophage P2Y<sub>12</sub> pathways act to constrain activity in the ENS, which could have implications in mechanisms that contribute to enteric hyperexcitability following disease.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-024-10060-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Purines are important mediators of intercellular communication in the enteric nervous system (ENS) that participate in physiological gut functions and disease. Purinergic transmission is prominent in mechanisms of crosstalk between enteric neurons and glia where enteric glia exhibit high responsiveness to adenosine diphosphate (ADP) through P2Y1 receptors and neurons to adenosine triphosphate (ATP) through P2X3 receptors. Despite functional data suggesting that enteric glia are the primary site of P2Y1 expression in the ENS, gene sequencing suggests that P2Y1 expression is more enriched in neurons than glia. The reason for the mismatch between genomic and functional data is unclear but could involve co-expression of inhibitory P2Y12 receptors in neurons. We addressed this issue by studying the expression and function of P2Y1 and P2Y12 receptors in the mouse ENS using live immunolabeling and calcium imaging techniques. The data show that ADP drives activity among enteric glia and neurons in the myenteric plexus. Interestingly, inhibiting P2Y12 activity increased neuron responses to ADP and overall spontaneous activity among enteric neurons and glia while decreasing the magnitude of glial responses to ADP. Investigating the location of the receptors involved revealed P2Y1 receptor expression by both neurons and glia, while P2Y12 receptor expression was minimal in the ENS. Instead, P2Y12 expression was enriched in the surrounding muscularis macrophages. Macrophages positive for P2Y12 overlapped with CD163 positive subsets that have known inhibitory influences over myenteric neurocircuits. Together, these data suggest that macrophage P2Y12 pathways act to constrain activity in the ENS, which could have implications in mechanisms that contribute to enteric hyperexcitability following disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Purinergic Signalling
Purinergic Signalling 医学-神经科学
CiteScore
6.60
自引率
17.10%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信