Humatch - fast, gene-specific joint humanisation of antibody heavy and light chains.

IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
mAbs Pub Date : 2024-01-01 Epub Date: 2024-11-29 DOI:10.1080/19420862.2024.2434121
Lewis Chinery, Jeliazko R Jeliazkov, Charlotte M Deane
{"title":"Humatch - fast, gene-specific joint humanisation of antibody heavy and light chains.","authors":"Lewis Chinery, Jeliazko R Jeliazkov, Charlotte M Deane","doi":"10.1080/19420862.2024.2434121","DOIUrl":null,"url":null,"abstract":"<p><p>Antibodies are a popular and powerful class of therapeutic due to their ability to exhibit high affinity and specificity to target proteins. However, the majority of antibody therapeutics are not genetically human, with initial therapeutic designs typically obtained from animal models. Humanization of these precursors is essential to reduce immunogenic risks when administered to humans.Here, we present Humatch, a computational tool designed to offer experimental-like joint humanization of heavy and light chains in seconds. Humatch consists of three lightweight Convolutional Neural Networks (CNNs) trained to identify human heavy V-genes, light V-genes, and well-paired antibody sequences with near-perfect accuracy. We show that these CNNs, alongside germline similarity, can be used for fast humanization that aligns well with known experimental data. Throughout the humanization process, a sequence is guided toward a specific target gene and away from others via multiclass CNN outputs and gene-specific germline data. This guidance ensures final humanized designs do not sit 'between' genes, a trait that is not naturally observed. Humatch's optimization toward specific genes and good VH/VL pairing increases the chances that final designs will be stable and express well and reduces the chances of immunogenic epitopes forming between the two chains. Humatch's training data and source code are provided open-source.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2434121"},"PeriodicalIF":5.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610552/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mAbs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2024.2434121","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Antibodies are a popular and powerful class of therapeutic due to their ability to exhibit high affinity and specificity to target proteins. However, the majority of antibody therapeutics are not genetically human, with initial therapeutic designs typically obtained from animal models. Humanization of these precursors is essential to reduce immunogenic risks when administered to humans.Here, we present Humatch, a computational tool designed to offer experimental-like joint humanization of heavy and light chains in seconds. Humatch consists of three lightweight Convolutional Neural Networks (CNNs) trained to identify human heavy V-genes, light V-genes, and well-paired antibody sequences with near-perfect accuracy. We show that these CNNs, alongside germline similarity, can be used for fast humanization that aligns well with known experimental data. Throughout the humanization process, a sequence is guided toward a specific target gene and away from others via multiclass CNN outputs and gene-specific germline data. This guidance ensures final humanized designs do not sit 'between' genes, a trait that is not naturally observed. Humatch's optimization toward specific genes and good VH/VL pairing increases the chances that final designs will be stable and express well and reduces the chances of immunogenic epitopes forming between the two chains. Humatch's training data and source code are provided open-source.

求助全文
约1分钟内获得全文 求助全文
来源期刊
mAbs
mAbs 工程技术-仪器仪表
CiteScore
10.70
自引率
11.30%
发文量
77
审稿时长
6-12 weeks
期刊介绍: mAbs is a multi-disciplinary journal dedicated to the art and science of antibody research and development. The journal has a strong scientific and medical focus, but also strives to serve a broader readership. The articles are thus of interest to scientists, clinical researchers, and physicians, as well as the wider mAb community, including our readers involved in technology transfer, legal issues, investment, strategic planning and the regulation of therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信