Assessment of clinical feasibility:offline adaptive radiotherapy for lung cancer utilizing kV iCBCT and UNet++ based deep learning model.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Hongwei Zeng, Qi Chen, Xiangyu E, Yue Feng, Minghe Lv, Su Zeng, Wenhao Shen, Wenhui Guan, Yang Zhang, Ruping Zhao, Shaobin Wang, Jingping Yu
{"title":"Assessment of clinical feasibility:offline adaptive radiotherapy for lung cancer utilizing kV iCBCT and UNet++ based deep learning model.","authors":"Hongwei Zeng, Qi Chen, Xiangyu E, Yue Feng, Minghe Lv, Su Zeng, Wenhao Shen, Wenhui Guan, Yang Zhang, Ruping Zhao, Shaobin Wang, Jingping Yu","doi":"10.1002/acm2.14582","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lung cancer poses a significant global health challenge. Adaptive radiotherapy (ART) addresses uncertainties due to lung tumor dynamics. We aimed to investigate a comprehensively and systematically validated offline ART regimen with high clinical feasibility for lung cancer.</p><p><strong>Methods: </strong>This study enrolled 102 lung cancer patients, who underwent kV iterative cone-beam computed tomography (iCBCT). Data collection included iCBCT and planning CT (pCT) scans. Among these, data from 70 patients were employed for training the UNet++ based deep learning model, while 15 patients were allocated for testing the model. The model transformed iCBCT into adaptive CT (aCT). Clinical radiotherapy feasibility was verified in 17 patients. The dosimetric evaluation encompassed GTV, organs at risk (OARs), and monitor units (MU), while delivery accuracy was validated using ArcCHECK and thermoluminescent dosimeter (TLD) detectors.</p><p><strong>Results: </strong>The UNet++ based deep learning model substantially improved image quality, reducing mean absolute error (MAE) by 70.05%, increasing peak signal-to-noise ratio (PSNR) by 17.97%, structural similarity (SSIM) by 7.41%, and the Hounsfield Units (HU) of aCT approaching a closer proximity to pCT compared to kV iCBCT. There were no significant differences observed in the dosimetric parameters of GTV and OARs between the aCT and pCT plans, confirming the accuracy of the dose maps in ART plans. Similarly, MU manifested no notable disparities, underscoring the consistency in treatment efficiency. Gamma passing rates for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans derived from aCT and pCT exceeded 98%, while the deviations in TLD measurements (within 2% to 7%) also exhibited no significant differences, thus corroborating the precision of dose delivery.</p><p><strong>Conclusion: </strong>An offline ART regimen utilizing kV iCBCT and UNet++ based deep learning model is clinically feasible for lung cancer treatment. This approach provides enhanced image quality, comparable treatment plans to pCT, and precise dose delivery.</p>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":" ","pages":"e14582"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/acm2.14582","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Lung cancer poses a significant global health challenge. Adaptive radiotherapy (ART) addresses uncertainties due to lung tumor dynamics. We aimed to investigate a comprehensively and systematically validated offline ART regimen with high clinical feasibility for lung cancer.

Methods: This study enrolled 102 lung cancer patients, who underwent kV iterative cone-beam computed tomography (iCBCT). Data collection included iCBCT and planning CT (pCT) scans. Among these, data from 70 patients were employed for training the UNet++ based deep learning model, while 15 patients were allocated for testing the model. The model transformed iCBCT into adaptive CT (aCT). Clinical radiotherapy feasibility was verified in 17 patients. The dosimetric evaluation encompassed GTV, organs at risk (OARs), and monitor units (MU), while delivery accuracy was validated using ArcCHECK and thermoluminescent dosimeter (TLD) detectors.

Results: The UNet++ based deep learning model substantially improved image quality, reducing mean absolute error (MAE) by 70.05%, increasing peak signal-to-noise ratio (PSNR) by 17.97%, structural similarity (SSIM) by 7.41%, and the Hounsfield Units (HU) of aCT approaching a closer proximity to pCT compared to kV iCBCT. There were no significant differences observed in the dosimetric parameters of GTV and OARs between the aCT and pCT plans, confirming the accuracy of the dose maps in ART plans. Similarly, MU manifested no notable disparities, underscoring the consistency in treatment efficiency. Gamma passing rates for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans derived from aCT and pCT exceeded 98%, while the deviations in TLD measurements (within 2% to 7%) also exhibited no significant differences, thus corroborating the precision of dose delivery.

Conclusion: An offline ART regimen utilizing kV iCBCT and UNet++ based deep learning model is clinically feasible for lung cancer treatment. This approach provides enhanced image quality, comparable treatment plans to pCT, and precise dose delivery.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
19.00%
发文量
331
审稿时长
3 months
期刊介绍: Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission. JACMP will publish: -Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500. -Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed. -Technical Notes: These should be no longer than 3000 words, including key references. -Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents. -Book Reviews: The editorial office solicits Book Reviews. -Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics. -Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信