From nature's pharmacy: harnessing bioactive phytoconstituents as fibroblast growth factor receptor 3 inhibitors for anti-cancer therapeutics.

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ahad Amer Alsaiari, Mazen Almehmadi, Amal F Gharib, Amani A Alrehaili, Fouzeyyah Ali Alsaeedi, Maha M Bakhuraysah, Shatha M Algethami, Nahed M Hawsawi, Mohammed Ageeli Hakami
{"title":"From nature's pharmacy: harnessing bioactive phytoconstituents as fibroblast growth factor receptor 3 inhibitors for anti-cancer therapeutics.","authors":"Ahad Amer Alsaiari, Mazen Almehmadi, Amal F Gharib, Amani A Alrehaili, Fouzeyyah Ali Alsaeedi, Maha M Bakhuraysah, Shatha M Algethami, Nahed M Hawsawi, Mohammed Ageeli Hakami","doi":"10.1080/07391102.2024.2435063","DOIUrl":null,"url":null,"abstract":"<p><p>Fibroblast growth factor receptor 3 (FGFR3) is a key protein involved in regulating cell growth and development. Aberrant activation of FGFR3 has been linked to several diseases, including cancer and skeletal disorders. Therefore, identifying potential inhibitors of FGFR3 is of great interest in developing targeted therapies. In this study, we employed a combined docking and molecular dynamics simulation (MDS) approach to investigate the inhibitory potential of plant-based compounds against FGFR3. Here, we utilized structure-based virtual screening to identify potential phytoconstituents from the IMPPAT library with the ability to inhibit FGFR3 activity. The initial screening process involved molecular docking to assess the binding potential of the compounds towards FGFR3. Afterward, we employed various filters to determine physicochemical properties, ADMET, and PASS evaluation to identify potential hits against FGFR3. This process discovered two phytoconstituents, Cycloartobiloxanthone and Desoxylimonin, as promising candidates against FGFR3. These compounds exhibited favorable binding affinity, efficiency, and specific interaction towards the FGFR3 binding pocket. They preferred binding to the active site of FGFR3 and possessed desirable drug-like properties. To gain a deeper understanding of their interaction mechanism, conformational dynamics, and stability, we conducted all-atom MDS lasting 200 nanoseconds (ns) on the FGFR3-Cycloartobiloxanthone and FGFR3-Desoxylimonin complexes. The MDS consistently demonstrated the formation of stable protein-ligand complexes between FGFR3 and Cycloartobiloxanthone/Desoxylimonin throughout the trajectory. Based on these results, it can be inferred that Cycloartobiloxanthone and Desoxylimonin can potentially serve as valuable scaffolds in developing drugs targeting FGFR3 for cancer therapeutic after required validation.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-12"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2435063","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fibroblast growth factor receptor 3 (FGFR3) is a key protein involved in regulating cell growth and development. Aberrant activation of FGFR3 has been linked to several diseases, including cancer and skeletal disorders. Therefore, identifying potential inhibitors of FGFR3 is of great interest in developing targeted therapies. In this study, we employed a combined docking and molecular dynamics simulation (MDS) approach to investigate the inhibitory potential of plant-based compounds against FGFR3. Here, we utilized structure-based virtual screening to identify potential phytoconstituents from the IMPPAT library with the ability to inhibit FGFR3 activity. The initial screening process involved molecular docking to assess the binding potential of the compounds towards FGFR3. Afterward, we employed various filters to determine physicochemical properties, ADMET, and PASS evaluation to identify potential hits against FGFR3. This process discovered two phytoconstituents, Cycloartobiloxanthone and Desoxylimonin, as promising candidates against FGFR3. These compounds exhibited favorable binding affinity, efficiency, and specific interaction towards the FGFR3 binding pocket. They preferred binding to the active site of FGFR3 and possessed desirable drug-like properties. To gain a deeper understanding of their interaction mechanism, conformational dynamics, and stability, we conducted all-atom MDS lasting 200 nanoseconds (ns) on the FGFR3-Cycloartobiloxanthone and FGFR3-Desoxylimonin complexes. The MDS consistently demonstrated the formation of stable protein-ligand complexes between FGFR3 and Cycloartobiloxanthone/Desoxylimonin throughout the trajectory. Based on these results, it can be inferred that Cycloartobiloxanthone and Desoxylimonin can potentially serve as valuable scaffolds in developing drugs targeting FGFR3 for cancer therapeutic after required validation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信