Purification of micrococcal nuclease for use in ribosomal profiling of high-salinity extremophiles.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Pavlina Gregorova, Matthew Isada, Jocelyne DiRuggiero, L Peter Sarin
{"title":"Purification of micrococcal nuclease for use in ribosomal profiling of high-salinity extremophiles.","authors":"Pavlina Gregorova, Matthew Isada, Jocelyne DiRuggiero, L Peter Sarin","doi":"10.1016/j.jbc.2024.108020","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleases, that is, enzymes that catalyze the hydrolysis of phosphodiester bonds in nucleic acids, are essential tools in molecular biology and biotechnology. Staphylococcus aureus nuclease is particularly interesting due to its thermostability and Ca<sup>2+</sup> dependence, making it the prime choice for applications where nuclease modulation is critical, such as ribosome profiling in bacteria and halophilic archaea. The latter poses a technical and economical challenge: high salt reaction conditions are essential for maintaining ribosome integrity but negatively impact the micrococcal nuclease (MNase) activity, necessitating using large amounts of nuclease to achieve efficient cleavage. Here, we set out to generate an optimized production protocol for two forms of MNase-fully processed MNaseA and the 19 amino acid propeptide-containing MNaseB-and to biochemically benchmark them against a commercial nuclease. Our results show that both MNases are highly active in normal reaction conditions, but MNaseA maintains higher enzymatic activity in high salt concentrations than MNaseB. MNaseA also retains >90% of its activity after multiple freeze-thaw cycles when stored at -80 °C in a buffer containing 5% glycerol. Importantly, ribosome profiling experiments in the haloarchaeon Haloferax volcanii demonstrated that MNaseA produces ribosome footprints and hallmarks of active translation highly comparable to those obtained with the commercial nuclease, making it a suitable alternative for high-salt ribosome profiling applications. In conclusion, our method can be easily implemented for efficient MNaseA production, thereby providing access to an effective, robust, and cost-efficient alternative to commercial nucleases, as well as facilitating future translation studies into halophilic organisms.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108020"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.108020","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nucleases, that is, enzymes that catalyze the hydrolysis of phosphodiester bonds in nucleic acids, are essential tools in molecular biology and biotechnology. Staphylococcus aureus nuclease is particularly interesting due to its thermostability and Ca2+ dependence, making it the prime choice for applications where nuclease modulation is critical, such as ribosome profiling in bacteria and halophilic archaea. The latter poses a technical and economical challenge: high salt reaction conditions are essential for maintaining ribosome integrity but negatively impact the micrococcal nuclease (MNase) activity, necessitating using large amounts of nuclease to achieve efficient cleavage. Here, we set out to generate an optimized production protocol for two forms of MNase-fully processed MNaseA and the 19 amino acid propeptide-containing MNaseB-and to biochemically benchmark them against a commercial nuclease. Our results show that both MNases are highly active in normal reaction conditions, but MNaseA maintains higher enzymatic activity in high salt concentrations than MNaseB. MNaseA also retains >90% of its activity after multiple freeze-thaw cycles when stored at -80 °C in a buffer containing 5% glycerol. Importantly, ribosome profiling experiments in the haloarchaeon Haloferax volcanii demonstrated that MNaseA produces ribosome footprints and hallmarks of active translation highly comparable to those obtained with the commercial nuclease, making it a suitable alternative for high-salt ribosome profiling applications. In conclusion, our method can be easily implemented for efficient MNaseA production, thereby providing access to an effective, robust, and cost-efficient alternative to commercial nucleases, as well as facilitating future translation studies into halophilic organisms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信