{"title":"stMMR: accurate and robust spatial domain identification from spatially resolved transcriptomics with multimodal feature representation.","authors":"Daoliang Zhang, Na Yu, Zhiyuan Yuan, Wenrui Li, Xue Sun, Qi Zou, Xiangyu Li, Zhiping Liu, Wei Zhang, Rui Gao","doi":"10.1093/gigascience/giae089","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Deciphering spatial domains using spatially resolved transcriptomics (SRT) is of great value for characterizing and understanding tissue architecture. However, the inherent heterogeneity and varying spatial resolutions present challenges in the joint analysis of multimodal SRT data.</p><p><strong>Results: </strong>We introduce a multimodal geometric deep learning method, named stMMR, to effectively integrate gene expression, spatial location, and histological information for accurate identifying spatial domains from SRT data. stMMR uses graph convolutional networks and a self-attention module for deep embedding of features within unimodality and incorporates similarity contrastive learning for integrating features across modalities.</p><p><strong>Conclusions: </strong>Comprehensive benchmark analysis on various types of spatial data shows superior performance of stMMR in multiple analyses, including spatial domain identification, pseudo-spatiotemporal analysis, and domain-specific gene discovery. In chicken heart development, stMMR reconstructed the spatiotemporal lineage structures, indicating an accurate developmental sequence. In breast cancer and lung cancer, stMMR clearly delineated the tumor microenvironment and identified marker genes associated with diagnosis and prognosis. Overall, stMMR is capable of effectively utilizing the multimodal information of various SRT data to explore and characterize tissue architectures of homeostasis, development, and tumor.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604062/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae089","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Deciphering spatial domains using spatially resolved transcriptomics (SRT) is of great value for characterizing and understanding tissue architecture. However, the inherent heterogeneity and varying spatial resolutions present challenges in the joint analysis of multimodal SRT data.
Results: We introduce a multimodal geometric deep learning method, named stMMR, to effectively integrate gene expression, spatial location, and histological information for accurate identifying spatial domains from SRT data. stMMR uses graph convolutional networks and a self-attention module for deep embedding of features within unimodality and incorporates similarity contrastive learning for integrating features across modalities.
Conclusions: Comprehensive benchmark analysis on various types of spatial data shows superior performance of stMMR in multiple analyses, including spatial domain identification, pseudo-spatiotemporal analysis, and domain-specific gene discovery. In chicken heart development, stMMR reconstructed the spatiotemporal lineage structures, indicating an accurate developmental sequence. In breast cancer and lung cancer, stMMR clearly delineated the tumor microenvironment and identified marker genes associated with diagnosis and prognosis. Overall, stMMR is capable of effectively utilizing the multimodal information of various SRT data to explore and characterize tissue architectures of homeostasis, development, and tumor.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.