stMMR: accurate and robust spatial domain identification from spatially resolved transcriptomics with multimodal feature representation.

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Daoliang Zhang, Na Yu, Zhiyuan Yuan, Wenrui Li, Xue Sun, Qi Zou, Xiangyu Li, Zhiping Liu, Wei Zhang, Rui Gao
{"title":"stMMR: accurate and robust spatial domain identification from spatially resolved transcriptomics with multimodal feature representation.","authors":"Daoliang Zhang, Na Yu, Zhiyuan Yuan, Wenrui Li, Xue Sun, Qi Zou, Xiangyu Li, Zhiping Liu, Wei Zhang, Rui Gao","doi":"10.1093/gigascience/giae089","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Deciphering spatial domains using spatially resolved transcriptomics (SRT) is of great value for characterizing and understanding tissue architecture. However, the inherent heterogeneity and varying spatial resolutions present challenges in the joint analysis of multimodal SRT data.</p><p><strong>Results: </strong>We introduce a multimodal geometric deep learning method, named stMMR, to effectively integrate gene expression, spatial location, and histological information for accurate identifying spatial domains from SRT data. stMMR uses graph convolutional networks and a self-attention module for deep embedding of features within unimodality and incorporates similarity contrastive learning for integrating features across modalities.</p><p><strong>Conclusions: </strong>Comprehensive benchmark analysis on various types of spatial data shows superior performance of stMMR in multiple analyses, including spatial domain identification, pseudo-spatiotemporal analysis, and domain-specific gene discovery. In chicken heart development, stMMR reconstructed the spatiotemporal lineage structures, indicating an accurate developmental sequence. In breast cancer and lung cancer, stMMR clearly delineated the tumor microenvironment and identified marker genes associated with diagnosis and prognosis. Overall, stMMR is capable of effectively utilizing the multimodal information of various SRT data to explore and characterize tissue architectures of homeostasis, development, and tumor.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604062/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae089","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Deciphering spatial domains using spatially resolved transcriptomics (SRT) is of great value for characterizing and understanding tissue architecture. However, the inherent heterogeneity and varying spatial resolutions present challenges in the joint analysis of multimodal SRT data.

Results: We introduce a multimodal geometric deep learning method, named stMMR, to effectively integrate gene expression, spatial location, and histological information for accurate identifying spatial domains from SRT data. stMMR uses graph convolutional networks and a self-attention module for deep embedding of features within unimodality and incorporates similarity contrastive learning for integrating features across modalities.

Conclusions: Comprehensive benchmark analysis on various types of spatial data shows superior performance of stMMR in multiple analyses, including spatial domain identification, pseudo-spatiotemporal analysis, and domain-specific gene discovery. In chicken heart development, stMMR reconstructed the spatiotemporal lineage structures, indicating an accurate developmental sequence. In breast cancer and lung cancer, stMMR clearly delineated the tumor microenvironment and identified marker genes associated with diagnosis and prognosis. Overall, stMMR is capable of effectively utilizing the multimodal information of various SRT data to explore and characterize tissue architectures of homeostasis, development, and tumor.

求助全文
约1分钟内获得全文 求助全文
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信