Effects of carbon black particles on human monocyte-derived macrophages: type-dependent pro-inflammatory activation in vitro.

IF 4.8 2区 医学 Q1 TOXICOLOGY
Justina Pajarskienė, Agnė Vailionytė, Ieva Uogintė, Steigvilė Byčenkienė, Ugnė Jonavičė, Ilona Uzielienė, Edvardas Bagdonas, Rūta Aldonytė
{"title":"Effects of carbon black particles on human monocyte-derived macrophages: type-dependent pro-inflammatory activation in vitro.","authors":"Justina Pajarskienė, Agnė Vailionytė, Ieva Uogintė, Steigvilė Byčenkienė, Ugnė Jonavičė, Ilona Uzielienė, Edvardas Bagdonas, Rūta Aldonytė","doi":"10.1007/s00204-024-03909-w","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon black is a key component of air-borne particulate matter, linked to adverse health outcomes, such as increased susceptibility to respiratory infections and chronic pulmonary disease exacerbations. Fine and ultrafine particles can penetrate the lungs, enter the bloodstream, and induce pathogenetic events. Macrophages play a crucial role in responding to inhaled particles, including carbon black, by initiating an innate immune response and upregulating pro-inflammatory cytokines and anti-oxidative enzymes. This study investigates the effects of carbon black particles on human monocyte-derived macrophages in vitro at a concentration of 10 µg/ml, offering insights into their potential role in disease pathogenesis. We have compared two commercially available carbon black particle types using various physicochemical techniques and assessed their biological effects on monocyte-derived macrophages. We have evaluated changes in cell viability, morphology, and particle uptake/phagocytosis. Western blot, ELISA, and RT-qPCR measured inflammatory and oxidative stress biomarkers. Both types of carbon black particles induced similar responses in macrophages, including particle uptake, cytokine production, and oxidative stress-related protein expression. The observed changes suggest activation of the Nrf2-mediated antioxidant response, impaired autophagy, and decreased cellular defense against oxidative stress, indicating potential pathways for chronic inflammatory lung disease development.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00204-024-03909-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon black is a key component of air-borne particulate matter, linked to adverse health outcomes, such as increased susceptibility to respiratory infections and chronic pulmonary disease exacerbations. Fine and ultrafine particles can penetrate the lungs, enter the bloodstream, and induce pathogenetic events. Macrophages play a crucial role in responding to inhaled particles, including carbon black, by initiating an innate immune response and upregulating pro-inflammatory cytokines and anti-oxidative enzymes. This study investigates the effects of carbon black particles on human monocyte-derived macrophages in vitro at a concentration of 10 µg/ml, offering insights into their potential role in disease pathogenesis. We have compared two commercially available carbon black particle types using various physicochemical techniques and assessed their biological effects on monocyte-derived macrophages. We have evaluated changes in cell viability, morphology, and particle uptake/phagocytosis. Western blot, ELISA, and RT-qPCR measured inflammatory and oxidative stress biomarkers. Both types of carbon black particles induced similar responses in macrophages, including particle uptake, cytokine production, and oxidative stress-related protein expression. The observed changes suggest activation of the Nrf2-mediated antioxidant response, impaired autophagy, and decreased cellular defense against oxidative stress, indicating potential pathways for chronic inflammatory lung disease development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Toxicology
Archives of Toxicology 医学-毒理学
CiteScore
11.60
自引率
4.90%
发文量
218
审稿时长
1.5 months
期刊介绍: Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信