Mônica R da Cruz, Pedro Azambuja, Kátia S C Torres, Fernanda Lima-Setta, André M Japiassú, Denise M Medeiros
{"title":"Identification and validation of respiratory subphenotypes in patients with COVID-19 acute respiratory distress syndrome undergoing prone position.","authors":"Mônica R da Cruz, Pedro Azambuja, Kátia S C Torres, Fernanda Lima-Setta, André M Japiassú, Denise M Medeiros","doi":"10.1186/s13613-024-01414-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The heterogeneity of acute respiratory distress syndrome (ARDS) patients is a challenge for the development of effective treatments. This study aimed to identify and characterize novel respiratory subphenotypes of COVID-19 ARDS, with potential implications for targeted patient management.</p><p><strong>Methods: </strong>Consecutive ventilated patients with PCR-confirmed COVID-19 infection, in which prone positioning was clinically indicated for moderate or severe ARDS, were included in a prospective cohort. The patients were assigned to development or validation cohorts based on a temporal split. The PaO<sub>2</sub>/FiO<sub>2</sub> ratio, respiratory compliance, and ventilatory ratio were assessed longitudinally throughout the first prone session. The subphenotypes were derived and validated using machine learning techniques. A K-means clustering implementation designed for joint trajectory analysis was utilized for the unsupervised classification of the development cohort. A random forest model was trained on the labeled development cohort and used to validate the subphenotypes in the validation cohort.</p><p><strong>Results: </strong>718 patients were included in a prospective cohort analysis. Of those, 504 were assigned to the development cohort and 214 to the validation cohort. Two distinct subphenotypes, labeled A and B, were identified. Subphenotype B had a lower PaO<sub>2</sub>/FiO<sub>2</sub> response during the prone session, higher ventilatory ratio, and lower compliance than subphenotype A. Subphenotype B had a higher proportion of females (p < 0.001) and lung disease (p = 0.005), higher baseline SAPS III (p = 0.002) and SOFA (p < 0.001) scores, and lower body mass index (p = 0.05). Subphenotype B had also higher levels of the pro-inflammatory biomarker IL-6 (p = 0.017). Subphenotype B was independently associated with an increased risk of 60-day mortality (OR 1.89, 95% CI 1.51-2.36). Additionally, Subphenotype B was associated with a lower number of ventilator-free days on day 28 (p < 0.001) and a lower hospital length of stay (p < 0.001). The subphenotypes were reproducible in the validation cohort.</p><p><strong>Conclusion: </strong>Our study successfully identified and validated two distinct subphenotypes of COVID-19 ARDS based on key respiratory parameters. The findings suggest potential implications for better patient stratification, risk assessment, and treatment personalization. Future research is warranted to explore the utility of these novel subphenotypes for guiding targeted therapeutic strategies in COVID-19 ARDS.</p>","PeriodicalId":7966,"journal":{"name":"Annals of Intensive Care","volume":"14 1","pages":"178"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Intensive Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13613-024-01414-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The heterogeneity of acute respiratory distress syndrome (ARDS) patients is a challenge for the development of effective treatments. This study aimed to identify and characterize novel respiratory subphenotypes of COVID-19 ARDS, with potential implications for targeted patient management.
Methods: Consecutive ventilated patients with PCR-confirmed COVID-19 infection, in which prone positioning was clinically indicated for moderate or severe ARDS, were included in a prospective cohort. The patients were assigned to development or validation cohorts based on a temporal split. The PaO2/FiO2 ratio, respiratory compliance, and ventilatory ratio were assessed longitudinally throughout the first prone session. The subphenotypes were derived and validated using machine learning techniques. A K-means clustering implementation designed for joint trajectory analysis was utilized for the unsupervised classification of the development cohort. A random forest model was trained on the labeled development cohort and used to validate the subphenotypes in the validation cohort.
Results: 718 patients were included in a prospective cohort analysis. Of those, 504 were assigned to the development cohort and 214 to the validation cohort. Two distinct subphenotypes, labeled A and B, were identified. Subphenotype B had a lower PaO2/FiO2 response during the prone session, higher ventilatory ratio, and lower compliance than subphenotype A. Subphenotype B had a higher proportion of females (p < 0.001) and lung disease (p = 0.005), higher baseline SAPS III (p = 0.002) and SOFA (p < 0.001) scores, and lower body mass index (p = 0.05). Subphenotype B had also higher levels of the pro-inflammatory biomarker IL-6 (p = 0.017). Subphenotype B was independently associated with an increased risk of 60-day mortality (OR 1.89, 95% CI 1.51-2.36). Additionally, Subphenotype B was associated with a lower number of ventilator-free days on day 28 (p < 0.001) and a lower hospital length of stay (p < 0.001). The subphenotypes were reproducible in the validation cohort.
Conclusion: Our study successfully identified and validated two distinct subphenotypes of COVID-19 ARDS based on key respiratory parameters. The findings suggest potential implications for better patient stratification, risk assessment, and treatment personalization. Future research is warranted to explore the utility of these novel subphenotypes for guiding targeted therapeutic strategies in COVID-19 ARDS.
期刊介绍:
Annals of Intensive Care is an online peer-reviewed journal that publishes high-quality review articles and original research papers in the field of intensive care medicine. It targets critical care providers including attending physicians, fellows, residents, nurses, and physiotherapists, who aim to enhance their knowledge and provide optimal care for their patients. The journal's articles are included in various prestigious databases such as CAS, Current contents, DOAJ, Embase, Journal Citation Reports/Science Edition, OCLC, PubMed, PubMed Central, Science Citation Index Expanded, SCOPUS, and Summon by Serial Solutions.