Identification and validation of respiratory subphenotypes in patients with COVID-19 acute respiratory distress syndrome undergoing prone position.

IF 5.7 1区 医学 Q1 CRITICAL CARE MEDICINE
Mônica R da Cruz, Pedro Azambuja, Kátia S C Torres, Fernanda Lima-Setta, André M Japiassú, Denise M Medeiros
{"title":"Identification and validation of respiratory subphenotypes in patients with COVID-19 acute respiratory distress syndrome undergoing prone position.","authors":"Mônica R da Cruz, Pedro Azambuja, Kátia S C Torres, Fernanda Lima-Setta, André M Japiassú, Denise M Medeiros","doi":"10.1186/s13613-024-01414-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The heterogeneity of acute respiratory distress syndrome (ARDS) patients is a challenge for the development of effective treatments. This study aimed to identify and characterize novel respiratory subphenotypes of COVID-19 ARDS, with potential implications for targeted patient management.</p><p><strong>Methods: </strong>Consecutive ventilated patients with PCR-confirmed COVID-19 infection, in which prone positioning was clinically indicated for moderate or severe ARDS, were included in a prospective cohort. The patients were assigned to development or validation cohorts based on a temporal split. The PaO<sub>2</sub>/FiO<sub>2</sub> ratio, respiratory compliance, and ventilatory ratio were assessed longitudinally throughout the first prone session. The subphenotypes were derived and validated using machine learning techniques. A K-means clustering implementation designed for joint trajectory analysis was utilized for the unsupervised classification of the development cohort. A random forest model was trained on the labeled development cohort and used to validate the subphenotypes in the validation cohort.</p><p><strong>Results: </strong>718 patients were included in a prospective cohort analysis. Of those, 504 were assigned to the development cohort and 214 to the validation cohort. Two distinct subphenotypes, labeled A and B, were identified. Subphenotype B had a lower PaO<sub>2</sub>/FiO<sub>2</sub> response during the prone session, higher ventilatory ratio, and lower compliance than subphenotype A. Subphenotype B had a higher proportion of females (p < 0.001) and lung disease (p = 0.005), higher baseline SAPS III (p = 0.002) and SOFA (p < 0.001) scores, and lower body mass index (p = 0.05). Subphenotype B had also higher levels of the pro-inflammatory biomarker IL-6 (p = 0.017). Subphenotype B was independently associated with an increased risk of 60-day mortality (OR 1.89, 95% CI 1.51-2.36). Additionally, Subphenotype B was associated with a lower number of ventilator-free days on day 28 (p < 0.001) and a lower hospital length of stay (p < 0.001). The subphenotypes were reproducible in the validation cohort.</p><p><strong>Conclusion: </strong>Our study successfully identified and validated two distinct subphenotypes of COVID-19 ARDS based on key respiratory parameters. The findings suggest potential implications for better patient stratification, risk assessment, and treatment personalization. Future research is warranted to explore the utility of these novel subphenotypes for guiding targeted therapeutic strategies in COVID-19 ARDS.</p>","PeriodicalId":7966,"journal":{"name":"Annals of Intensive Care","volume":"14 1","pages":"178"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Intensive Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13613-024-01414-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The heterogeneity of acute respiratory distress syndrome (ARDS) patients is a challenge for the development of effective treatments. This study aimed to identify and characterize novel respiratory subphenotypes of COVID-19 ARDS, with potential implications for targeted patient management.

Methods: Consecutive ventilated patients with PCR-confirmed COVID-19 infection, in which prone positioning was clinically indicated for moderate or severe ARDS, were included in a prospective cohort. The patients were assigned to development or validation cohorts based on a temporal split. The PaO2/FiO2 ratio, respiratory compliance, and ventilatory ratio were assessed longitudinally throughout the first prone session. The subphenotypes were derived and validated using machine learning techniques. A K-means clustering implementation designed for joint trajectory analysis was utilized for the unsupervised classification of the development cohort. A random forest model was trained on the labeled development cohort and used to validate the subphenotypes in the validation cohort.

Results: 718 patients were included in a prospective cohort analysis. Of those, 504 were assigned to the development cohort and 214 to the validation cohort. Two distinct subphenotypes, labeled A and B, were identified. Subphenotype B had a lower PaO2/FiO2 response during the prone session, higher ventilatory ratio, and lower compliance than subphenotype A. Subphenotype B had a higher proportion of females (p < 0.001) and lung disease (p = 0.005), higher baseline SAPS III (p = 0.002) and SOFA (p < 0.001) scores, and lower body mass index (p = 0.05). Subphenotype B had also higher levels of the pro-inflammatory biomarker IL-6 (p = 0.017). Subphenotype B was independently associated with an increased risk of 60-day mortality (OR 1.89, 95% CI 1.51-2.36). Additionally, Subphenotype B was associated with a lower number of ventilator-free days on day 28 (p < 0.001) and a lower hospital length of stay (p < 0.001). The subphenotypes were reproducible in the validation cohort.

Conclusion: Our study successfully identified and validated two distinct subphenotypes of COVID-19 ARDS based on key respiratory parameters. The findings suggest potential implications for better patient stratification, risk assessment, and treatment personalization. Future research is warranted to explore the utility of these novel subphenotypes for guiding targeted therapeutic strategies in COVID-19 ARDS.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Intensive Care
Annals of Intensive Care CRITICAL CARE MEDICINE-
CiteScore
14.20
自引率
3.70%
发文量
107
审稿时长
13 weeks
期刊介绍: Annals of Intensive Care is an online peer-reviewed journal that publishes high-quality review articles and original research papers in the field of intensive care medicine. It targets critical care providers including attending physicians, fellows, residents, nurses, and physiotherapists, who aim to enhance their knowledge and provide optimal care for their patients. The journal's articles are included in various prestigious databases such as CAS, Current contents, DOAJ, Embase, Journal Citation Reports/Science Edition, OCLC, PubMed, PubMed Central, Science Citation Index Expanded, SCOPUS, and Summon by Serial Solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信