Hole-Selective SiN x and AlO x Tunnel Nanolayers for Improved Polysilicon Passivating Contacts.

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
ACS Applied Energy Materials Pub Date : 2024-11-14 eCollection Date: 2024-11-25 DOI:10.1021/acsaem.4c01170
Shona McNab, Audrey Morisset, Sofia Libraro, Ezgi Genç, Xinya Niu, Jack E N Swallow, Peter Wilshaw, Robert S Weatherup, Matthew Wright, Franz-Josef Haug, Ruy S Bonilla
{"title":"Hole-Selective SiN <sub><i>x</i></sub> and AlO <sub><i>x</i></sub> Tunnel Nanolayers for Improved Polysilicon Passivating Contacts.","authors":"Shona McNab, Audrey Morisset, Sofia Libraro, Ezgi Genç, Xinya Niu, Jack E N Swallow, Peter Wilshaw, Robert S Weatherup, Matthew Wright, Franz-Josef Haug, Ruy S Bonilla","doi":"10.1021/acsaem.4c01170","DOIUrl":null,"url":null,"abstract":"<p><p>A highly efficient hole-selective passivating contact remains the crucial step required to increase the efficiency of polysilicon-based Si solar cells. The future development of solar modules depends on a device structure that can complement the electron-selective tunnel oxide passivating contact with an equivalent hole-selective contact. We investigate plasma enhanced chemical vapor deposited (PECVD) SiN <sub><i>x</i></sub> and atomic layer deposited AlO <sub><i>x</i></sub> as alternative nanolayers for the passivation layer in polysilicon tunnel contacts. We have fabricated p<sup>+</sup> poly-Si contacts with resistivities below 100 mΩ·cm<sup>2</sup> using these alternative metal oxide and nitride nanolayers. Initial passivation tests yielded low levels of passivation; however, a detailed understanding of the nanolayers elucidated the strategies to improve passivation significantly, achieving an implied open-circuit voltage (<i>iV</i> <sub>OC</sub>) of 698 mV and dark saturation current density (<i>J</i> <sub>0</sub>) of 34 fA/cm<sup>2</sup> for a p<sup>+</sup> poly-Si contact using a PECVD SiN <sub><i>x</i></sub> interlayer. These are among the best reported for nitride-based nanolayer tunneling contacts, with research into nitride-based tunneling contacts being still in its infancy.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 22","pages":"10259-10270"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600395/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaem.4c01170","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A highly efficient hole-selective passivating contact remains the crucial step required to increase the efficiency of polysilicon-based Si solar cells. The future development of solar modules depends on a device structure that can complement the electron-selective tunnel oxide passivating contact with an equivalent hole-selective contact. We investigate plasma enhanced chemical vapor deposited (PECVD) SiN x and atomic layer deposited AlO x as alternative nanolayers for the passivation layer in polysilicon tunnel contacts. We have fabricated p+ poly-Si contacts with resistivities below 100 mΩ·cm2 using these alternative metal oxide and nitride nanolayers. Initial passivation tests yielded low levels of passivation; however, a detailed understanding of the nanolayers elucidated the strategies to improve passivation significantly, achieving an implied open-circuit voltage (iV OC) of 698 mV and dark saturation current density (J 0) of 34 fA/cm2 for a p+ poly-Si contact using a PECVD SiN x interlayer. These are among the best reported for nitride-based nanolayer tunneling contacts, with research into nitride-based tunneling contacts being still in its infancy.

用于改进多晶硅钝化触点的孔选择性sinx和AlO x隧道纳米层。
高效的孔选择性钝化接触仍然是提高多晶硅基硅太阳能电池效率所需的关键步骤。太阳能组件的未来发展取决于一种能够与等效的空穴选择接触补充电子选择隧道氧化物钝化接触的器件结构。我们研究了等离子体增强化学气相沉积(PECVD) sinx和原子层沉积的alox作为多晶硅隧道触点钝化层的替代纳米层。我们利用这些替代金属氧化物和氮化物纳米层制备了电阻率低于100 mΩ·cm2的p+多晶硅触点。最初的钝化试验产生了低水平的钝化;然而,对纳米层的详细了解阐明了显著改善钝化的策略,使用PECVD SiN x中间层实现p+多晶硅触点的隐含开路电压(iV OC)为698 mV,暗饱和电流密度(J 0)为34 fA/cm2。这些都是氮基纳米层隧道触点的最佳报道,对氮基隧道触点的研究仍处于起步阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信