Uniqueness up to inner automorphism of regular exact Borel subalgebras

IF 1.5 1区 数学 Q1 MATHEMATICS
Anna Rodriguez Rasmussen
{"title":"Uniqueness up to inner automorphism of regular exact Borel subalgebras","authors":"Anna Rodriguez Rasmussen","doi":"10.1016/j.aim.2024.110049","DOIUrl":null,"url":null,"abstract":"<div><div>In <span><span>[18]</span></span>, Külshammer, König and Ovsienko proved that for any quasi-hereditary algebra <span><math><mo>(</mo><mi>A</mi><mo>,</mo><msub><mrow><mo>≤</mo></mrow><mrow><mi>A</mi></mrow></msub><mo>)</mo></math></span> there exists a Morita equivalent quasi-hereditary algebra <span><math><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mo>≤</mo></mrow><mrow><mi>R</mi></mrow></msub><mo>)</mo></math></span> containing a basic exact Borel subalgebra <em>B</em>. The Borel subalgebra <em>B</em> constructed in <span><span>[18]</span></span> is in fact a regular exact Borel subalgebra as defined in <span><span>[7]</span></span>. Later, Conde <span><span>[9]</span></span> showed that given a quasi-hereditary algebra <span><math><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mo>≤</mo></mrow><mrow><mi>R</mi></mrow></msub><mo>)</mo></math></span> with a basic regular exact Borel subalgebra <em>B</em> and a Morita equivalent quasi-hereditary algebra <span><math><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><msub><mrow><mo>≤</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub><mo>)</mo></math></span> with a basic regular exact Borel subalgebra <span><math><msup><mrow><mi>B</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, the algebras <em>R</em> and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> are isomorphic, and Külshammer and Miemietz <span><span>[20]</span></span> showed that there is even an isomorphism <span><math><mi>φ</mi><mo>:</mo><mi>R</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> such that <span><math><mi>φ</mi><mo>(</mo><mi>B</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>B</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>.</div><div>In this article, we show that if <span><math><mi>R</mi><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, then <em>φ</em> can be chosen to be an inner automorphism. Moreover, instead of just proving this for regular exact Borel subalgebras of quasi-hereditary algebras, we generalize this to an appropriate class of subalgebras of arbitrary finite-dimensional algebras. As an application, we show that if <span><math><mo>(</mo><mi>A</mi><mo>,</mo><msub><mrow><mo>≤</mo></mrow><mrow><mi>A</mi></mrow></msub><mo>)</mo></math></span> is a finite-dimensional algebra and <em>G</em> is a finite group acting on <em>A</em> via automorphisms, then under some natural compatibility conditions, there is a Morita equivalent quasi-hereditary algebra <span><math><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mo>≤</mo></mrow><mrow><mi>R</mi></mrow></msub><mo>)</mo></math></span> with a basic regular exact Borel subalgebra <em>B</em> such that <span><math><mi>g</mi><mo>(</mo><mi>B</mi><mo>)</mo><mo>=</mo><mi>B</mi></math></span> for every <span><math><mi>g</mi><mo>∈</mo><mi>G</mi></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"461 ","pages":"Article 110049"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005656","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In [18], Külshammer, König and Ovsienko proved that for any quasi-hereditary algebra (A,A) there exists a Morita equivalent quasi-hereditary algebra (R,R) containing a basic exact Borel subalgebra B. The Borel subalgebra B constructed in [18] is in fact a regular exact Borel subalgebra as defined in [7]. Later, Conde [9] showed that given a quasi-hereditary algebra (R,R) with a basic regular exact Borel subalgebra B and a Morita equivalent quasi-hereditary algebra (R,R) with a basic regular exact Borel subalgebra B, the algebras R and R are isomorphic, and Külshammer and Miemietz [20] showed that there is even an isomorphism φ:RR such that φ(B)=B.
In this article, we show that if R=R, then φ can be chosen to be an inner automorphism. Moreover, instead of just proving this for regular exact Borel subalgebras of quasi-hereditary algebras, we generalize this to an appropriate class of subalgebras of arbitrary finite-dimensional algebras. As an application, we show that if (A,A) is a finite-dimensional algebra and G is a finite group acting on A via automorphisms, then under some natural compatibility conditions, there is a Morita equivalent quasi-hereditary algebra (R,R) with a basic regular exact Borel subalgebra B such that g(B)=B for every gG.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信