{"title":"Uniqueness up to inner automorphism of regular exact Borel subalgebras","authors":"Anna Rodriguez Rasmussen","doi":"10.1016/j.aim.2024.110049","DOIUrl":null,"url":null,"abstract":"<div><div>In <span><span>[18]</span></span>, Külshammer, König and Ovsienko proved that for any quasi-hereditary algebra <span><math><mo>(</mo><mi>A</mi><mo>,</mo><msub><mrow><mo>≤</mo></mrow><mrow><mi>A</mi></mrow></msub><mo>)</mo></math></span> there exists a Morita equivalent quasi-hereditary algebra <span><math><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mo>≤</mo></mrow><mrow><mi>R</mi></mrow></msub><mo>)</mo></math></span> containing a basic exact Borel subalgebra <em>B</em>. The Borel subalgebra <em>B</em> constructed in <span><span>[18]</span></span> is in fact a regular exact Borel subalgebra as defined in <span><span>[7]</span></span>. Later, Conde <span><span>[9]</span></span> showed that given a quasi-hereditary algebra <span><math><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mo>≤</mo></mrow><mrow><mi>R</mi></mrow></msub><mo>)</mo></math></span> with a basic regular exact Borel subalgebra <em>B</em> and a Morita equivalent quasi-hereditary algebra <span><math><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><msub><mrow><mo>≤</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub><mo>)</mo></math></span> with a basic regular exact Borel subalgebra <span><math><msup><mrow><mi>B</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, the algebras <em>R</em> and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> are isomorphic, and Külshammer and Miemietz <span><span>[20]</span></span> showed that there is even an isomorphism <span><math><mi>φ</mi><mo>:</mo><mi>R</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> such that <span><math><mi>φ</mi><mo>(</mo><mi>B</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>B</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>.</div><div>In this article, we show that if <span><math><mi>R</mi><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, then <em>φ</em> can be chosen to be an inner automorphism. Moreover, instead of just proving this for regular exact Borel subalgebras of quasi-hereditary algebras, we generalize this to an appropriate class of subalgebras of arbitrary finite-dimensional algebras. As an application, we show that if <span><math><mo>(</mo><mi>A</mi><mo>,</mo><msub><mrow><mo>≤</mo></mrow><mrow><mi>A</mi></mrow></msub><mo>)</mo></math></span> is a finite-dimensional algebra and <em>G</em> is a finite group acting on <em>A</em> via automorphisms, then under some natural compatibility conditions, there is a Morita equivalent quasi-hereditary algebra <span><math><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mo>≤</mo></mrow><mrow><mi>R</mi></mrow></msub><mo>)</mo></math></span> with a basic regular exact Borel subalgebra <em>B</em> such that <span><math><mi>g</mi><mo>(</mo><mi>B</mi><mo>)</mo><mo>=</mo><mi>B</mi></math></span> for every <span><math><mi>g</mi><mo>∈</mo><mi>G</mi></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"461 ","pages":"Article 110049"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005656","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In [18], Külshammer, König and Ovsienko proved that for any quasi-hereditary algebra there exists a Morita equivalent quasi-hereditary algebra containing a basic exact Borel subalgebra B. The Borel subalgebra B constructed in [18] is in fact a regular exact Borel subalgebra as defined in [7]. Later, Conde [9] showed that given a quasi-hereditary algebra with a basic regular exact Borel subalgebra B and a Morita equivalent quasi-hereditary algebra with a basic regular exact Borel subalgebra , the algebras R and are isomorphic, and Külshammer and Miemietz [20] showed that there is even an isomorphism such that .
In this article, we show that if , then φ can be chosen to be an inner automorphism. Moreover, instead of just proving this for regular exact Borel subalgebras of quasi-hereditary algebras, we generalize this to an appropriate class of subalgebras of arbitrary finite-dimensional algebras. As an application, we show that if is a finite-dimensional algebra and G is a finite group acting on A via automorphisms, then under some natural compatibility conditions, there is a Morita equivalent quasi-hereditary algebra with a basic regular exact Borel subalgebra B such that for every .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.