Domain generalization via geometric adaptation over augmented data

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ali Atghaei, Mohammad Rahmati
{"title":"Domain generalization via geometric adaptation over augmented data","authors":"Ali Atghaei,&nbsp;Mohammad Rahmati","doi":"10.1016/j.knosys.2024.112765","DOIUrl":null,"url":null,"abstract":"<div><div>This article addresses the challenge of adapting deep learning models trained on specific datasets to effectively generalize to similar-class dataset with different underlying distributions. We introduce a novel deep representation learning method that takes into account both statistical and geometric properties of features for domain generalization. Our approach utilizes Fourier augmentation and Nyström estimation to evaluate the similarity between graphs derived from original and augmented data features. Furthermore, we employ a contrastive loss function to maintain proximity among samples belonging to the same class while ensuring separation between samples from different classes in the feature space. By minimizing these loss functions, our method aims to enhance model generalizability across diverse domains. Comprehensive experiments conducted on real-world benchmark datasets, including PACS, Office-Home, VLCS, Digits-DG and UTKFace, demonstrate the effectiveness of the proposed method. The results consistently indicate superior performance compared to other approaches under various conditions, underscoring its robustness in achieving improved generalization across domains.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"309 ","pages":"Article 112765"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013996","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This article addresses the challenge of adapting deep learning models trained on specific datasets to effectively generalize to similar-class dataset with different underlying distributions. We introduce a novel deep representation learning method that takes into account both statistical and geometric properties of features for domain generalization. Our approach utilizes Fourier augmentation and Nyström estimation to evaluate the similarity between graphs derived from original and augmented data features. Furthermore, we employ a contrastive loss function to maintain proximity among samples belonging to the same class while ensuring separation between samples from different classes in the feature space. By minimizing these loss functions, our method aims to enhance model generalizability across diverse domains. Comprehensive experiments conducted on real-world benchmark datasets, including PACS, Office-Home, VLCS, Digits-DG and UTKFace, demonstrate the effectiveness of the proposed method. The results consistently indicate superior performance compared to other approaches under various conditions, underscoring its robustness in achieving improved generalization across domains.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信