Crack-free manufacture of single weld tracks on aluminum alloy 6013 with the usage of laser beam shaping and oscillation strategies

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Thomas Stoll , Maximilian Schmitt , Laura-Marie Müller , Frank Palm
{"title":"Crack-free manufacture of single weld tracks on aluminum alloy 6013 with the usage of laser beam shaping and oscillation strategies","authors":"Thomas Stoll ,&nbsp;Maximilian Schmitt ,&nbsp;Laura-Marie Müller ,&nbsp;Frank Palm","doi":"10.1016/j.jajp.2024.100269","DOIUrl":null,"url":null,"abstract":"<div><div>The present paper investigates the application of laser beam shaping and laser beam oscillations (wobbling) for laser processing of the crack-prone aluminum alloy 6013, used in automotive and aerospace applications. A comparison of different laser beam profiles, such as the commonly used Gaussian profile, a ring-core distribution with the intensity of 50 % in the ring and 50 % in the core, and a ring-shaped beam profile shows different cracking behavior of the material. The ring-shaped beam profile shows the most promising results due to a reduction of the thermal gradient G and an enhancement of the growth rate R, which isalso stated by the state of the art. A combination of laser beam shaping and laser beam oscillations shows reproducible crack-free processing of Al6013 sheets at all three beam profiles at different parameter combinations. The crack elimination can be attributed to the emergence of a more pronounced equiaxed grain structure in the fusion zone of the weld with the application of laser beam oscillations and laser beam shaping. Thus, the temperature gradient G, the growth rate R and, therefore, the cooling rate can be controlled with the presented variation of the laser beam shapes and scanning strategies. Furthermore, the penetration depth of the laser at a Gaussian beam profile can be reduced using laser beam shaping, showing shallower melt pools with a lower depth-to-width aspect ratio, also suitable for the process of powder bed fusion of metals using a laser-based system (PBF-LB/M).</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100269"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330924000852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper investigates the application of laser beam shaping and laser beam oscillations (wobbling) for laser processing of the crack-prone aluminum alloy 6013, used in automotive and aerospace applications. A comparison of different laser beam profiles, such as the commonly used Gaussian profile, a ring-core distribution with the intensity of 50 % in the ring and 50 % in the core, and a ring-shaped beam profile shows different cracking behavior of the material. The ring-shaped beam profile shows the most promising results due to a reduction of the thermal gradient G and an enhancement of the growth rate R, which isalso stated by the state of the art. A combination of laser beam shaping and laser beam oscillations shows reproducible crack-free processing of Al6013 sheets at all three beam profiles at different parameter combinations. The crack elimination can be attributed to the emergence of a more pronounced equiaxed grain structure in the fusion zone of the weld with the application of laser beam oscillations and laser beam shaping. Thus, the temperature gradient G, the growth rate R and, therefore, the cooling rate can be controlled with the presented variation of the laser beam shapes and scanning strategies. Furthermore, the penetration depth of the laser at a Gaussian beam profile can be reduced using laser beam shaping, showing shallower melt pools with a lower depth-to-width aspect ratio, also suitable for the process of powder bed fusion of metals using a laser-based system (PBF-LB/M).
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信