{"title":"Design, synthesis and characterization of novel thiazolidinone derivatives: Insights from a network pharmacology approach for breast cancer therapy","authors":"Obaid Afzal , M K Kathiravan","doi":"10.1016/j.molstruc.2024.140915","DOIUrl":null,"url":null,"abstract":"<div><div>Among various types, breast cancer remains the most prevalent reason of cancer-related fatalities, underscoring its profound effect on women's health globally. In this study, we reported the synthesis and characterization of a new sequence of thiazolidinone derivatives linked to 2,4-dichlorobenzaldehyde. The compound's structures were confirmed through HRMS, while their detailed structural features were determined <em>via</em> IR, ¹H- and ¹³C<img>NMR spectroscopic analysis. To identify potential biological targets, network pharmacology techniques were applied to the synthesized 2,4-dichlorobenzaldehyde derivatives, which pointed to STAT3 as a primary target of interest. Additionally, the ADMET properties and molecular docking of these compounds were evaluated against the STAT3 protein. Virtual docking analyses acknowledged compound <strong>11</strong> as having the competent binding affinity, with a docking score of -7.87 kcal/mol, suggesting robust interactions with the key amino acid residues, Trp243 and His457. Furthermore, molecular dynamics simulation recognised the stability of compound <strong>11</strong>, as it maintained its structural integrity within the protein binding pocket throughout the 100 ns simulation.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1324 ","pages":"Article 140915"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024034227","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Among various types, breast cancer remains the most prevalent reason of cancer-related fatalities, underscoring its profound effect on women's health globally. In this study, we reported the synthesis and characterization of a new sequence of thiazolidinone derivatives linked to 2,4-dichlorobenzaldehyde. The compound's structures were confirmed through HRMS, while their detailed structural features were determined via IR, ¹H- and ¹³CNMR spectroscopic analysis. To identify potential biological targets, network pharmacology techniques were applied to the synthesized 2,4-dichlorobenzaldehyde derivatives, which pointed to STAT3 as a primary target of interest. Additionally, the ADMET properties and molecular docking of these compounds were evaluated against the STAT3 protein. Virtual docking analyses acknowledged compound 11 as having the competent binding affinity, with a docking score of -7.87 kcal/mol, suggesting robust interactions with the key amino acid residues, Trp243 and His457. Furthermore, molecular dynamics simulation recognised the stability of compound 11, as it maintained its structural integrity within the protein binding pocket throughout the 100 ns simulation.
期刊介绍:
The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including:
• Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.)
• Chemical intermediates
• Molecules in excited states
• Biological molecules
• Polymers.
The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example:
• Infrared spectroscopy (mid, far, near)
• Raman spectroscopy and non-linear Raman methods (CARS, etc.)
• Electronic absorption spectroscopy
• Optical rotatory dispersion and circular dichroism
• Fluorescence and phosphorescence techniques
• Electron spectroscopies (PES, XPS), EXAFS, etc.
• Microwave spectroscopy
• Electron diffraction
• NMR and ESR spectroscopies
• Mössbauer spectroscopy
• X-ray crystallography
• Charge Density Analyses
• Computational Studies (supplementing experimental methods)
We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.