{"title":"Automatic grammatical tagger for a Spanish–Mixtec parallel corpus","authors":"Hermilo Santiago-Benito , Diana-Margarita Córdova-Esparza , Noé-Alejandro Castro-Sánchez , Juan Terven , Julio-Alejandro Romero-González , Teresa García-Ramirez","doi":"10.1016/j.softx.2024.101985","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we developed the first intelligent automatic grammatical tagger for a Spanish–Mixtec parallel corpus in Mexico. The proposed tagger consists of multiple phases. We started by collecting a Spanish–Mixtec parallel corpus of 12,300 sentences. Then, we tokenized the corpus at the word level, removing empty lines, duplicate sentences, and empty terms from the texts, followed by identifying word units, such as multiword and compound words, and defined word classes, specifying mandatory, recommended, and optional characteristics according to the EAGLES group. We established a standard for annotating words based on EAGLES, considering three elements: attribute, value, and code. Finally, we proposed a synthetic Mixtec tag using GPT-4, GPT-4o, and a manual tag using alignment, conditional random fields (CRF) and BERT models. We manually annotated 600 sentences for a total of 2800 words and semi-automatically annotated 3000 more sentences using GPT-4o with few-shot prompting. We trained multiple models for automatic grammatical tagging, achieving a precision of 0.74 and a recall of 0.80.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"29 ","pages":"Article 101985"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711024003558","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we developed the first intelligent automatic grammatical tagger for a Spanish–Mixtec parallel corpus in Mexico. The proposed tagger consists of multiple phases. We started by collecting a Spanish–Mixtec parallel corpus of 12,300 sentences. Then, we tokenized the corpus at the word level, removing empty lines, duplicate sentences, and empty terms from the texts, followed by identifying word units, such as multiword and compound words, and defined word classes, specifying mandatory, recommended, and optional characteristics according to the EAGLES group. We established a standard for annotating words based on EAGLES, considering three elements: attribute, value, and code. Finally, we proposed a synthetic Mixtec tag using GPT-4, GPT-4o, and a manual tag using alignment, conditional random fields (CRF) and BERT models. We manually annotated 600 sentences for a total of 2800 words and semi-automatically annotated 3000 more sentences using GPT-4o with few-shot prompting. We trained multiple models for automatic grammatical tagging, achieving a precision of 0.74 and a recall of 0.80.
期刊介绍:
SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.