Integrated multi-satellite data and machine learning approach in mapping the successional stages of forest types in a tropical montane forest

IF 3.8 Q2 ENVIRONMENTAL SCIENCES
Richard Dein D. Altarez , Armando Apan , Tek Maraseni
{"title":"Integrated multi-satellite data and machine learning approach in mapping the successional stages of forest types in a tropical montane forest","authors":"Richard Dein D. Altarez ,&nbsp;Armando Apan ,&nbsp;Tek Maraseni","doi":"10.1016/j.rsase.2024.101407","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the successional stages in tropical montane forests (TMF) is crucial for its conservation and management. This study integrated Sentinel-1, Sentinel-2, InSAR, GEDI, and machine learning to map the categorical successional stages of different forest types in a Philippines’ TMF. Field data collected from December 2022 to January 2023 were used to create and validate successional stages models. Sentinel-1 interferogram, unwrapped interferogram, and coherence exhibited moderate positive correlations with canopy height (r = 0.43). Incorporating GEDI with InSAR to predict canopy height yielded less accurate predictions (r = −0.20 to 0.04; RMSE = 12–13 m). Results show that canopy height, a widely accepted attribute for forest structure, appears secondary to other biophysical variables. Integrating optical, radar, and auxiliary variables achieved an overall accuracy of 79.56% and a kappa value of 75.74%. Feature importance analysis using Random Forest enhanced the overall accuracy (84.22%) and kappa value (81.19%). The integration of multi-satellite data with machine learning has proven effective for studying TMFs successional stages. Elevation emerged as the most significant predictor of forest type distribution, with mature and young pine forests dominating lower elevation (700–1,400m) and mossy forests dominating above 1,400m. Given the observed disturbances, the study underscores the need for robust conservation strategies and sustainable TMF management. Future research should focus on time-series analyses of successional stages, further optimization of machine learning models, and integrating additional data sources, such as LiDAR, to enhance canopy height predictions and forest monitoring efforts. The findings also provide valuable knowledge applicable to TMFs globally, supporting informed conservation and policies intended to protect biodiversity.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101407"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the successional stages in tropical montane forests (TMF) is crucial for its conservation and management. This study integrated Sentinel-1, Sentinel-2, InSAR, GEDI, and machine learning to map the categorical successional stages of different forest types in a Philippines’ TMF. Field data collected from December 2022 to January 2023 were used to create and validate successional stages models. Sentinel-1 interferogram, unwrapped interferogram, and coherence exhibited moderate positive correlations with canopy height (r = 0.43). Incorporating GEDI with InSAR to predict canopy height yielded less accurate predictions (r = −0.20 to 0.04; RMSE = 12–13 m). Results show that canopy height, a widely accepted attribute for forest structure, appears secondary to other biophysical variables. Integrating optical, radar, and auxiliary variables achieved an overall accuracy of 79.56% and a kappa value of 75.74%. Feature importance analysis using Random Forest enhanced the overall accuracy (84.22%) and kappa value (81.19%). The integration of multi-satellite data with machine learning has proven effective for studying TMFs successional stages. Elevation emerged as the most significant predictor of forest type distribution, with mature and young pine forests dominating lower elevation (700–1,400m) and mossy forests dominating above 1,400m. Given the observed disturbances, the study underscores the need for robust conservation strategies and sustainable TMF management. Future research should focus on time-series analyses of successional stages, further optimization of machine learning models, and integrating additional data sources, such as LiDAR, to enhance canopy height predictions and forest monitoring efforts. The findings also provide valuable knowledge applicable to TMFs globally, supporting informed conservation and policies intended to protect biodiversity.
综合多卫星数据和机器学习方法在热带山地森林类型演替阶段制图中的应用
了解热带山地森林演替阶段对其保护和管理具有重要意义。该研究综合了Sentinel-1、Sentinel-2、InSAR、GEDI和机器学习,绘制了菲律宾TMF不同森林类型的分类演替阶段。从2022年12月到2023年1月收集的现场数据用于创建和验证连续阶段模型。Sentinel-1干涉图、未包裹干涉图和相干性与冠层高度呈中等正相关(r = 0.43)。结合GEDI和InSAR预测冠层高度的准确度较低(r = - 0.20 ~ 0.04;研究结果表明,林冠高度作为森林结构的一个被广泛接受的属性,其重要性次于其他生物物理变量。综合光学、雷达和辅助变量,总体精度为79.56%,kappa值为75.74%。随机森林特征重要性分析提高了总体准确率(84.22%)和kappa值(81.19%)。多卫星数据与机器学习相结合已被证明是研究TMFs连续阶段的有效方法。海拔是森林类型分布最显著的预测因子,低海拔(700 - 1400米)以成熟和幼松林为主,1400米以上以苔藓林为主。鉴于观察到的干扰,该研究强调了强有力的保护策略和可持续的TMF管理的必要性。未来的研究应侧重于演代阶段的时间序列分析,进一步优化机器学习模型,并整合其他数据源,如激光雷达,以加强冠层高度预测和森林监测工作。研究结果还提供了适用于全球TMFs的宝贵知识,支持旨在保护生物多样性的知情保护和政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信