Advanced sensorless control of a 12S/19P YASA-AFFSSPM motor using extended state observer and adaptive sliding mode control

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Javad Rahmani-Fard , Mohammed Jamal Mohammed
{"title":"Advanced sensorless control of a 12S/19P YASA-AFFSSPM motor using extended state observer and adaptive sliding mode control","authors":"Javad Rahmani-Fard ,&nbsp;Mohammed Jamal Mohammed","doi":"10.1016/j.compeleceng.2024.109932","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on enhancing the sensorless control performance of a 12slots/19 poles yokeless and segmented armature axial flux-switching sandwiched permanent-magnet motor by proposing a rotor position Extended State Observer based on a extended back-EMF model method. Additionally, an adaptive sliding mode speed loop compensation method is introduced to address the significant cogging torque of the motor. By injecting the observed cogging torque as compensation into the q-axis current harmonic, this method aims to improve the motor's vibration and disturbance rejection performance in sliding mode control while eliminating steady-state errors in rotor speed and position estimation. The effectiveness of these control algorithms is validated through simulations and experiments under various operating conditions, demonstrating their potential for improving the position signal-free tracking performance of the investigated motor. The results indicate that the proposed control strategies achieve a maximum speed estimation error of approximately 1 rpm during steady-state operation and a maximum position estimation error of about 1.5°, showcasing high accuracy and robustness against disturbances.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"121 ","pages":"Article 109932"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624008577","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on enhancing the sensorless control performance of a 12slots/19 poles yokeless and segmented armature axial flux-switching sandwiched permanent-magnet motor by proposing a rotor position Extended State Observer based on a extended back-EMF model method. Additionally, an adaptive sliding mode speed loop compensation method is introduced to address the significant cogging torque of the motor. By injecting the observed cogging torque as compensation into the q-axis current harmonic, this method aims to improve the motor's vibration and disturbance rejection performance in sliding mode control while eliminating steady-state errors in rotor speed and position estimation. The effectiveness of these control algorithms is validated through simulations and experiments under various operating conditions, demonstrating their potential for improving the position signal-free tracking performance of the investigated motor. The results indicate that the proposed control strategies achieve a maximum speed estimation error of approximately 1 rpm during steady-state operation and a maximum position estimation error of about 1.5°, showcasing high accuracy and robustness against disturbances.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Electrical Engineering
Computers & Electrical Engineering 工程技术-工程:电子与电气
CiteScore
9.20
自引率
7.00%
发文量
661
审稿时长
47 days
期刊介绍: The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency. Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信