{"title":"Optimal frame selection-based watermarking using a meta-heuristic algorithm for securing video content","authors":"Roop Singh , Raju Pal , Deepak Joshi","doi":"10.1016/j.compeleceng.2024.109857","DOIUrl":null,"url":null,"abstract":"<div><div>Optimal embedding factor selection is still an open challenging issue in video watermarking. To address the same, this paper introduces a modified gravitational search algorithm (MGSA) based video watermarking (VW) scheme, termed VW-MGSA. In this proposed method, a novel variant of gravitational search algorithm i.e MGSA is employed to attain multiple optimal embedding factors (MOEF). VW-MGSA embeds watermark logo into maximum entropy blocks of size 8 × 8 followed by 1-level RDWT and Schur transform. The proposed GSA variant (MGSA) was evaluated experimentally and statistically using 22 standard benchmark functions, covering unimodal, multimodal, and fixed-dimension categories. The performance has been assessed using key metrics such as mean, standard deviation, Friedman test, and convergence graphs. These results confirm that the proposed variant outperforms existing meta-heuristic algorithms. Moreover, VW-MGSA has been validated on 8 standard benchmark videos over 19 attacks and evaluated using PSNR, SSIM, and NC metrics. The experimental and statistical results confirm that VW-MGSA outperforms existing video watermarking methods. It significantly improves the balance between imperceptibility and robustness compared to existing methods, with a measured improvement of 39.63%. The improved performance of the VW-MGSA can be applied to real-world platforms like Netflix and Amazon Prime to safeguard licensed content, with watermarks aiding in tracing piracy sources.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"121 ","pages":"Article 109857"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624007845","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Optimal embedding factor selection is still an open challenging issue in video watermarking. To address the same, this paper introduces a modified gravitational search algorithm (MGSA) based video watermarking (VW) scheme, termed VW-MGSA. In this proposed method, a novel variant of gravitational search algorithm i.e MGSA is employed to attain multiple optimal embedding factors (MOEF). VW-MGSA embeds watermark logo into maximum entropy blocks of size 8 × 8 followed by 1-level RDWT and Schur transform. The proposed GSA variant (MGSA) was evaluated experimentally and statistically using 22 standard benchmark functions, covering unimodal, multimodal, and fixed-dimension categories. The performance has been assessed using key metrics such as mean, standard deviation, Friedman test, and convergence graphs. These results confirm that the proposed variant outperforms existing meta-heuristic algorithms. Moreover, VW-MGSA has been validated on 8 standard benchmark videos over 19 attacks and evaluated using PSNR, SSIM, and NC metrics. The experimental and statistical results confirm that VW-MGSA outperforms existing video watermarking methods. It significantly improves the balance between imperceptibility and robustness compared to existing methods, with a measured improvement of 39.63%. The improved performance of the VW-MGSA can be applied to real-world platforms like Netflix and Amazon Prime to safeguard licensed content, with watermarks aiding in tracing piracy sources.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.