SPNet: A Serial and Parallel Convolutional Neural Network algorithm for the cross-language coreference resolution

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zixi Jia , Tianli Zhao , Jingyu Ru , Yanxiang Meng , Bing Xia
{"title":"SPNet: A Serial and Parallel Convolutional Neural Network algorithm for the cross-language coreference resolution","authors":"Zixi Jia ,&nbsp;Tianli Zhao ,&nbsp;Jingyu Ru ,&nbsp;Yanxiang Meng ,&nbsp;Bing Xia","doi":"10.1016/j.csl.2024.101729","DOIUrl":null,"url":null,"abstract":"<div><div>Current models of coreference resolution always neglect the importance of hidden feature extraction, accurate scoring framework design, and the long-term influence of preceding potential antecedents on future decision-making. However, these aspects play vital roles in scoring the likelihood of coreference between an anaphora and its’ real antecedent. In this paper, we present a novel model named Serial and Parallel Convolutional Neural Network (SPNet). Based on the SPNet, two kinds of resolvers are proposed. Given the characteristics of reinforcement learning, we joint the reinforcement learning framework and the SPNet to solve the problem of Chinese zero pronoun resolution. What is more, we make some fine-tuning on the SPNet and propose a new resolver combined with the end-to-end framework to solve the problem of coreference resolution. The experiments are conducted on the CoNLL-2012 dataset and the results show that our model is effective. Our model achieves excellent performance in the Chinese zero pronoun resolution task. On the other hand, compared with our baseline, our model also has an improvement of 0.3% in coreference resolution task.</div></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"91 ","pages":"Article 101729"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230824001128","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Current models of coreference resolution always neglect the importance of hidden feature extraction, accurate scoring framework design, and the long-term influence of preceding potential antecedents on future decision-making. However, these aspects play vital roles in scoring the likelihood of coreference between an anaphora and its’ real antecedent. In this paper, we present a novel model named Serial and Parallel Convolutional Neural Network (SPNet). Based on the SPNet, two kinds of resolvers are proposed. Given the characteristics of reinforcement learning, we joint the reinforcement learning framework and the SPNet to solve the problem of Chinese zero pronoun resolution. What is more, we make some fine-tuning on the SPNet and propose a new resolver combined with the end-to-end framework to solve the problem of coreference resolution. The experiments are conducted on the CoNLL-2012 dataset and the results show that our model is effective. Our model achieves excellent performance in the Chinese zero pronoun resolution task. On the other hand, compared with our baseline, our model also has an improvement of 0.3% in coreference resolution task.
SPNet:一种用于跨语言共同参考解析的串行和并行卷积神经网络算法
当前的共参考分辨率模型往往忽视了隐藏特征提取、准确评分框架设计以及之前潜在前因对未来决策的长期影响的重要性。然而,这些方面在评价回指与其真实先行词之间的共指可能性方面起着至关重要的作用。在本文中,我们提出了一种新的模型——串行和并行卷积神经网络(SPNet)。基于SPNet,提出了两种解析器。针对强化学习的特点,我们将强化学习框架与SPNet相结合,解决了汉语零代词的识别问题。此外,我们对SPNet进行了一些微调,提出了一种结合端到端框架的解析器来解决共参考解析问题。在CoNLL-2012数据集上进行了实验,结果表明该模型是有效的。该模型在汉语零代词解析任务中取得了优异的成绩。另一方面,与我们的基线相比,我们的模型在共参考分辨率任务上也有0.3%的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Speech and Language
Computer Speech and Language 工程技术-计算机:人工智能
CiteScore
11.30
自引率
4.70%
发文量
80
审稿时长
22.9 weeks
期刊介绍: Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language. The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信