{"title":"Association between urban green space and transmission of COVID-19 in Oslo, Norway: A Bayesian SIR modeling approach","authors":"Halvor Kjellesvig , Suleman Atique , Lars Böcker , Geir Aamodt","doi":"10.1016/j.sste.2024.100699","DOIUrl":null,"url":null,"abstract":"<div><h3>Background:</h3><div>Access to green spaces can provide opportunities for physical activities and social interactions in urban areas during times with strict social distancing. In particular COVID-19 transmission is reduced in ventilated areas. During several waves of the pandemic, this study explores the association between access to urban green spaces and COVID-19 transmission at the district level in Norway’s capital, Oslo.</div></div><div><h3>Methods:</h3><div>We used daily numbers of confirmed laboratory PCR tests on district levels reported from the second to the fifth wave of the COVID-19 pandemic, from October 15, 2020 to April 15, 2022 in Oslo. We included the population’s access to urban green spaces using two objective measurements: percentage of green area (%Ga) and vegetation cover (NDVI) using 300 and 1000 m buffers. The socio-demographic variables percentage of low-income population, average life expectancy and population density were also included. A Bayesian Susceptible–Infected–Removed (SIR) model was used to take advantage of the daily updated data on COVID-19 incidence and account for spatial and temporal dependencies in the statistical analysis.</div></div><div><h3>Results:</h3><div>We found that low income as well as population density were significantly associated with incidence of COVID-19, but for the second and third waves only. For the second wave, a one percent increase in the proportion with low income at district level increased the risk of COVID-19 by 7 % (95 % CI: 3 % - 11 %) We did not find associations between access to green space and incidence rate for any of the buffer sizes. The second and third waves were more governed by socio-demographic factors than the fourth and fifth wave.</div></div><div><h3>Conclusions:</h3><div>Incidence rate of COVID-19 was not associated with access to green space, but to the socio-demographic variables; income, population density, and life expectancy. Access to green space is equally distributed among districts in Oslo which may explain our findings.</div></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"52 ","pages":"Article 100699"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584524000662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Background:
Access to green spaces can provide opportunities for physical activities and social interactions in urban areas during times with strict social distancing. In particular COVID-19 transmission is reduced in ventilated areas. During several waves of the pandemic, this study explores the association between access to urban green spaces and COVID-19 transmission at the district level in Norway’s capital, Oslo.
Methods:
We used daily numbers of confirmed laboratory PCR tests on district levels reported from the second to the fifth wave of the COVID-19 pandemic, from October 15, 2020 to April 15, 2022 in Oslo. We included the population’s access to urban green spaces using two objective measurements: percentage of green area (%Ga) and vegetation cover (NDVI) using 300 and 1000 m buffers. The socio-demographic variables percentage of low-income population, average life expectancy and population density were also included. A Bayesian Susceptible–Infected–Removed (SIR) model was used to take advantage of the daily updated data on COVID-19 incidence and account for spatial and temporal dependencies in the statistical analysis.
Results:
We found that low income as well as population density were significantly associated with incidence of COVID-19, but for the second and third waves only. For the second wave, a one percent increase in the proportion with low income at district level increased the risk of COVID-19 by 7 % (95 % CI: 3 % - 11 %) We did not find associations between access to green space and incidence rate for any of the buffer sizes. The second and third waves were more governed by socio-demographic factors than the fourth and fifth wave.
Conclusions:
Incidence rate of COVID-19 was not associated with access to green space, but to the socio-demographic variables; income, population density, and life expectancy. Access to green space is equally distributed among districts in Oslo which may explain our findings.