Wen-Rui Nie , Hang-Hang Gu , Xian-Cheng Zhang , Shan-Tung Tu , Run-Zi Wang
{"title":"Hybrid-driven probabilistic damage assessment of creep-fatigue-oxidation interaction","authors":"Wen-Rui Nie , Hang-Hang Gu , Xian-Cheng Zhang , Shan-Tung Tu , Run-Zi Wang","doi":"10.1016/j.ijfatigue.2024.108732","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a hybrid-driven probabilistic damage assessment approach by considering creep-fatigue-oxidation damage interaction (CFO-DI). Based on generalized strain energy density exhaustion (GSEDE) framework, the hybrid-driven concept integrates the strengths of both physics-based models and machine learning, exploring the frontier from deterministic evaluation to probabilistic assessment. Experimental investigations involving generalized creep-fatigue loading tests are conducted to establish a comprehensive dataset in Inconel 718 at 650 °C. Deterministic models for fatigue, creep, and oxidation damages are developed, and their interactions are analyzed using the GSEDE framework. To tackle limited experimental data, a divide-and-conquer strategy employing machine learning models is implemented for data augmentation. Probabilistic assessments are performed incorporating uncertainties from material properties, loading conditions, and model parameters using Monte Carlo simulations and Latin Hypercube Sampling. The results demonstrate accurate life prediction accuracy and reliable probability distributions in the presence of oxidation damage. Finally, a novel three-dimensional probabilistic CFO-DI assessment diagram quantified by the confidence level is developed, providing a technical pathway for safe-life design in high-temperature structural applications.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"192 ","pages":"Article 108732"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005917","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a hybrid-driven probabilistic damage assessment approach by considering creep-fatigue-oxidation damage interaction (CFO-DI). Based on generalized strain energy density exhaustion (GSEDE) framework, the hybrid-driven concept integrates the strengths of both physics-based models and machine learning, exploring the frontier from deterministic evaluation to probabilistic assessment. Experimental investigations involving generalized creep-fatigue loading tests are conducted to establish a comprehensive dataset in Inconel 718 at 650 °C. Deterministic models for fatigue, creep, and oxidation damages are developed, and their interactions are analyzed using the GSEDE framework. To tackle limited experimental data, a divide-and-conquer strategy employing machine learning models is implemented for data augmentation. Probabilistic assessments are performed incorporating uncertainties from material properties, loading conditions, and model parameters using Monte Carlo simulations and Latin Hypercube Sampling. The results demonstrate accurate life prediction accuracy and reliable probability distributions in the presence of oxidation damage. Finally, a novel three-dimensional probabilistic CFO-DI assessment diagram quantified by the confidence level is developed, providing a technical pathway for safe-life design in high-temperature structural applications.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.