Advancing rule learning in knowledge graphs with structure-aware graph transformer

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Kang Xu, Miqi Chen, Yifan Feng, Zhenjiang Dong
{"title":"Advancing rule learning in knowledge graphs with structure-aware graph transformer","authors":"Kang Xu,&nbsp;Miqi Chen,&nbsp;Yifan Feng,&nbsp;Zhenjiang Dong","doi":"10.1016/j.ipm.2024.103976","DOIUrl":null,"url":null,"abstract":"<div><div>In knowledge graphs (KGs), logic rules offer interpretable explanations for predictions and are essential for reasoning on downstream tasks, such as question answering. However, a key challenge remains unresolved: how to effectively encode and utilize the structural features around the head entity to generate the most applicable rules. This paper proposes a structure-aware graph transformer for rule learning, namely Structure-Aware Rule Learning (SARL), which leverages both local and global structural information of the subgraph around the head entity to generate the most suitable rule path. SARL employs a generalized attention mechanism combined with replaceable feature extractors to aggregate local structural information of entities. It then incorporates global structural and relational information to further model the subgraph structure. Finally, a rule decoder utilizes the comprehensive subgraph representation to generate the most appropriate rules. Comprehensive experiments on four real-world knowledge graph datasets reveal that SARL significantly enhances performance and surpasses existing methods in the link prediction task on large-scale KGs, with Hits@1 improvements of 6.5% on UMLS and 4.5% on FB15K-237.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 2","pages":"Article 103976"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324003352","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In knowledge graphs (KGs), logic rules offer interpretable explanations for predictions and are essential for reasoning on downstream tasks, such as question answering. However, a key challenge remains unresolved: how to effectively encode and utilize the structural features around the head entity to generate the most applicable rules. This paper proposes a structure-aware graph transformer for rule learning, namely Structure-Aware Rule Learning (SARL), which leverages both local and global structural information of the subgraph around the head entity to generate the most suitable rule path. SARL employs a generalized attention mechanism combined with replaceable feature extractors to aggregate local structural information of entities. It then incorporates global structural and relational information to further model the subgraph structure. Finally, a rule decoder utilizes the comprehensive subgraph representation to generate the most appropriate rules. Comprehensive experiments on four real-world knowledge graph datasets reveal that SARL significantly enhances performance and surpasses existing methods in the link prediction task on large-scale KGs, with Hits@1 improvements of 6.5% on UMLS and 4.5% on FB15K-237.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信