FuzzAGG: A fuzzing-driven attack graph generation framework for industrial robot systems

IF 4.8 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiaosheng Liu, Wenqi Jiang, Zhongwei Li, Xianji Jin, Zihan Ma, Qingyang Li
{"title":"FuzzAGG: A fuzzing-driven attack graph generation framework for industrial robot systems","authors":"Xiaosheng Liu,&nbsp;Wenqi Jiang,&nbsp;Zhongwei Li,&nbsp;Xianji Jin,&nbsp;Zihan Ma,&nbsp;Qingyang Li","doi":"10.1016/j.cose.2024.104223","DOIUrl":null,"url":null,"abstract":"<div><div>As industrial robot systems (IRS) are increasingly utilized in smart factories, their information security issues have become particularly critical. Attack graphs, an essential system-level risk modeling technique, traditionally rely on predefined risk attributes and exploitation rules for their generation. However, this approach fails to meet the needs for attack graph generation and analysis in environments with missing risk data. To address this issue, this paper proposes a fuzzing-driven attack graph generation framework, FuzzAGG. This framework aims to provide an efficient and accurate method for generating attack graphs under conditions of incomplete risk data, thereby supporting information security analysis and risk assessment of IRS. In this paper, a risk data model (RDM) is constructed using the Meta Attack Language to achieve a structured description of the risk data of IRS. A fuzzing test case generation algorithm based on the MU-SeqGAN model is proposed, which can generate test cases suitable for the state machines of IRS and map them to specific Risk Data Model Objects (RDMOs). Additionally, a conversion unit is designed to integrate all RDMOs into a risk description file, which is then used by the generation unit to construct a graphical attack graph. In performance tests, FuzzAGG is able to achieve automated construction of IRS attack graphs containing 1000 state nodes in 42 min and maintain 88 % risk coverage. Taking the IRS of a PCB automated production line the effectiveness of the FuzzAGG framework is validated. The results demonstrate that FuzzAGG can automatically generate and validate an attack graph containing 184 attribute nodes and atomic attack nodes in 8 min with high operational efficiency, proving the practicality and reliability of this method in automated attack graph generation.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"150 ","pages":"Article 104223"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824005297","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As industrial robot systems (IRS) are increasingly utilized in smart factories, their information security issues have become particularly critical. Attack graphs, an essential system-level risk modeling technique, traditionally rely on predefined risk attributes and exploitation rules for their generation. However, this approach fails to meet the needs for attack graph generation and analysis in environments with missing risk data. To address this issue, this paper proposes a fuzzing-driven attack graph generation framework, FuzzAGG. This framework aims to provide an efficient and accurate method for generating attack graphs under conditions of incomplete risk data, thereby supporting information security analysis and risk assessment of IRS. In this paper, a risk data model (RDM) is constructed using the Meta Attack Language to achieve a structured description of the risk data of IRS. A fuzzing test case generation algorithm based on the MU-SeqGAN model is proposed, which can generate test cases suitable for the state machines of IRS and map them to specific Risk Data Model Objects (RDMOs). Additionally, a conversion unit is designed to integrate all RDMOs into a risk description file, which is then used by the generation unit to construct a graphical attack graph. In performance tests, FuzzAGG is able to achieve automated construction of IRS attack graphs containing 1000 state nodes in 42 min and maintain 88 % risk coverage. Taking the IRS of a PCB automated production line the effectiveness of the FuzzAGG framework is validated. The results demonstrate that FuzzAGG can automatically generate and validate an attack graph containing 184 attribute nodes and atomic attack nodes in 8 min with high operational efficiency, proving the practicality and reliability of this method in automated attack graph generation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Security
Computers & Security 工程技术-计算机:信息系统
CiteScore
12.40
自引率
7.10%
发文量
365
审稿时长
10.7 months
期刊介绍: Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world. Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信