A neural network transformation based global optimization algorithm

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lingxiao Wu, Hao Chen, Zhouwang Yang
{"title":"A neural network transformation based global optimization algorithm","authors":"Lingxiao Wu,&nbsp;Hao Chen,&nbsp;Zhouwang Yang","doi":"10.1016/j.ins.2024.121693","DOIUrl":null,"url":null,"abstract":"<div><div>In the field of global optimization, finding the global optimum for complex problems remains a significant challenge. Traditional optimization methods often struggle to escape local minima and achieve global solutions, particularly when the initial solutions are far from the global optimum. This study addresses these challenges by introducing a novel algorithm called neural network transformation based global optimization. Our approach transforms original decision variables into higher-dimensional neural network parameters and constructs an empirical loss function using multiple sample points. By employing stochastic gradient descent for training, our approach effectively navigates the optimization landscape, escaping local minima and reaching low-loss solutions with high probability, even from distant starting points. We also propose a hybrid optimization method that combines the strength of metaheuristic strategies. The experimental results show that our hybrid method surpasses traditional global optimization algorithms, achieving an average 5% improvement in the success rate across benchmark functions. In practical applications, such as the B-spline curve approximation, our method reduces the fitting error by at least 10% compared with conventional approaches, delivering more accurate results. This study contributes a new gradient-based algorithm to the global optimization field, particularly effective for complex real-world problems where the initial points are far from the global minima.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"694 ","pages":"Article 121693"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524016074","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of global optimization, finding the global optimum for complex problems remains a significant challenge. Traditional optimization methods often struggle to escape local minima and achieve global solutions, particularly when the initial solutions are far from the global optimum. This study addresses these challenges by introducing a novel algorithm called neural network transformation based global optimization. Our approach transforms original decision variables into higher-dimensional neural network parameters and constructs an empirical loss function using multiple sample points. By employing stochastic gradient descent for training, our approach effectively navigates the optimization landscape, escaping local minima and reaching low-loss solutions with high probability, even from distant starting points. We also propose a hybrid optimization method that combines the strength of metaheuristic strategies. The experimental results show that our hybrid method surpasses traditional global optimization algorithms, achieving an average 5% improvement in the success rate across benchmark functions. In practical applications, such as the B-spline curve approximation, our method reduces the fitting error by at least 10% compared with conventional approaches, delivering more accurate results. This study contributes a new gradient-based algorithm to the global optimization field, particularly effective for complex real-world problems where the initial points are far from the global minima.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信