{"title":"Predicting seismic sustainability for a complex CHESST interaction by AHP using LWST","authors":"Foisal Haque","doi":"10.1016/j.jsasus.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>Underground and over-ground structures are affected by the external forces (tsunami, earthquake, storm, etc.) that are directly related to the environment and change in climate. For this reason, a complex climate-human-environment-structure-soil-tunnel (GHESST) interaction model is proposed in this research which is categorized based on the structure types (building, bridge, elevated, road/rail way). The best CHESST interaction model is selected based on the analytic hierarchy process (AHP) by using logical weightage selection technique (LWST). The LWST depends on the proposed modified logical scale. The logical weightage matrices are prepared for the three criteria (environment and climate, social, and economic), three sub-criteria under each criteria, and goal (selection of best CHESST interaction model). The weightage selection technique is validated based on the acceptable rate of decision change sensitivity. The elevated (alternative of the CHESST interaction model) shows the maximum value of seismic sustainability index (SSI) among all alternatives based on the AHP results. Also, the maximum fluctuation rate of strain is found for the elevated structure of the CHESST interaction model from the shake table test results. The most seismic sustainable CHESST interaction model is elevated expressway according to the SSI because of showing highest priority of 0.368. However, there is a scope to enhance this research in future by considering more alternatives, criteria, sub-criteria, etc.</div></div>","PeriodicalId":100831,"journal":{"name":"Journal of Safety and Sustainability","volume":"1 3","pages":"Pages 181-188"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Safety and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949926724000283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Underground and over-ground structures are affected by the external forces (tsunami, earthquake, storm, etc.) that are directly related to the environment and change in climate. For this reason, a complex climate-human-environment-structure-soil-tunnel (GHESST) interaction model is proposed in this research which is categorized based on the structure types (building, bridge, elevated, road/rail way). The best CHESST interaction model is selected based on the analytic hierarchy process (AHP) by using logical weightage selection technique (LWST). The LWST depends on the proposed modified logical scale. The logical weightage matrices are prepared for the three criteria (environment and climate, social, and economic), three sub-criteria under each criteria, and goal (selection of best CHESST interaction model). The weightage selection technique is validated based on the acceptable rate of decision change sensitivity. The elevated (alternative of the CHESST interaction model) shows the maximum value of seismic sustainability index (SSI) among all alternatives based on the AHP results. Also, the maximum fluctuation rate of strain is found for the elevated structure of the CHESST interaction model from the shake table test results. The most seismic sustainable CHESST interaction model is elevated expressway according to the SSI because of showing highest priority of 0.368. However, there is a scope to enhance this research in future by considering more alternatives, criteria, sub-criteria, etc.