Advancing machine learning in Industry 4.0: Benchmark framework for rare-event prediction in chemical processes

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Vikram Sudarshan, Warren D. Seider
{"title":"Advancing machine learning in Industry 4.0: Benchmark framework for rare-event prediction in chemical processes","authors":"Vikram Sudarshan,&nbsp;Warren D. Seider","doi":"10.1016/j.compchemeng.2024.108929","DOIUrl":null,"url":null,"abstract":"<div><div>Previously, using forward-flux sampling (FFS) and machine learning (ML), we developed multivariate alarm systems to counter rare un-postulated abnormal events. Our alarm systems utilized ML-based predictive models to quantify committer probabilities as functions of key process variables (e.g., temperature, concentrations, and the like), with these data obtained in FFS simulations. Herein, we introduce a comprehensive benchmark framework for rare-event prediction, comparing ML algorithms of varying complexity, including Linear Support-Vector Regressor and k-Nearest Neighbors, to more sophisticated algorithms, such as Random Forests, XGBoost, LightGBM, CatBoost, Dense Neural Networks, and TabNet. This evaluation uses comprehensive performance metrics: <em>RMSE,</em> model training, testing, hyperparameter tuning and deployment times, and number and efficiency of alarms. These balance model accuracy, computational efficiency, and alarm-system efficiency, identifying optimal ML strategies for predicting abnormal rare events, enabling operators to obtain safer and more reliable plant operations.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108929"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003478","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Previously, using forward-flux sampling (FFS) and machine learning (ML), we developed multivariate alarm systems to counter rare un-postulated abnormal events. Our alarm systems utilized ML-based predictive models to quantify committer probabilities as functions of key process variables (e.g., temperature, concentrations, and the like), with these data obtained in FFS simulations. Herein, we introduce a comprehensive benchmark framework for rare-event prediction, comparing ML algorithms of varying complexity, including Linear Support-Vector Regressor and k-Nearest Neighbors, to more sophisticated algorithms, such as Random Forests, XGBoost, LightGBM, CatBoost, Dense Neural Networks, and TabNet. This evaluation uses comprehensive performance metrics: RMSE, model training, testing, hyperparameter tuning and deployment times, and number and efficiency of alarms. These balance model accuracy, computational efficiency, and alarm-system efficiency, identifying optimal ML strategies for predicting abnormal rare events, enabling operators to obtain safer and more reliable plant operations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信