Multiscale optimization of formic acid dehydrogenation process via linear model decision tree surrogates

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ethan M. Sunshine , Giovanna Bucci , Tanusree Chatterjee , Shyam Deo , Victoria M. Ehlinger , Wenqin Li , Thomas Moore , Corey Myers , Wenyu Sun , Bo-Xun Wang , Mengyao Yuan , John R. Kitchin , Carl D. Laird , Matthew J. McNenly , Sneha A. Akhade
{"title":"Multiscale optimization of formic acid dehydrogenation process via linear model decision tree surrogates","authors":"Ethan M. Sunshine ,&nbsp;Giovanna Bucci ,&nbsp;Tanusree Chatterjee ,&nbsp;Shyam Deo ,&nbsp;Victoria M. Ehlinger ,&nbsp;Wenqin Li ,&nbsp;Thomas Moore ,&nbsp;Corey Myers ,&nbsp;Wenyu Sun ,&nbsp;Bo-Xun Wang ,&nbsp;Mengyao Yuan ,&nbsp;John R. Kitchin ,&nbsp;Carl D. Laird ,&nbsp;Matthew J. McNenly ,&nbsp;Sneha A. Akhade","doi":"10.1016/j.compchemeng.2024.108921","DOIUrl":null,"url":null,"abstract":"<div><div>Multiscale optimization problems require the interconnection of several models of distinct phenomena which occur at different scales in length or time. However, the best model for any particular phenomenon may not be amenable to rigorous optimization techniques. For instance, molecular interactions are often modeled by computational chemistry software packages that cannot be easily converted into optimization constraints. Data-driven surrogate models can overcome this problem. By choosing surrogates with functional forms that are convertible to a mixed-integer linear model, one can connect and optimize these surrogates instead of the underlying models. We demonstrate the interconnection of linear model decision trees to optimize across three scales of a formic acid dehydrogenation process. We show that optimizing across all three scales simultaneously leads to a 40% cost savings compared to optimizing each model independently. Furthermore, the surrogates retain some relevant physical behaviors and provide insights into the optimal design of this process.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108921"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003399","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Multiscale optimization problems require the interconnection of several models of distinct phenomena which occur at different scales in length or time. However, the best model for any particular phenomenon may not be amenable to rigorous optimization techniques. For instance, molecular interactions are often modeled by computational chemistry software packages that cannot be easily converted into optimization constraints. Data-driven surrogate models can overcome this problem. By choosing surrogates with functional forms that are convertible to a mixed-integer linear model, one can connect and optimize these surrogates instead of the underlying models. We demonstrate the interconnection of linear model decision trees to optimize across three scales of a formic acid dehydrogenation process. We show that optimizing across all three scales simultaneously leads to a 40% cost savings compared to optimizing each model independently. Furthermore, the surrogates retain some relevant physical behaviors and provide insights into the optimal design of this process.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信