A multi-objective robust scenario-based stochastic chance constrained programming model for sustainable closed-loop agri-food supply chain

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Misagh Rahbari, Alireza Arshadi Khamseh, Mohammad Mohammadi
{"title":"A multi-objective robust scenario-based stochastic chance constrained programming model for sustainable closed-loop agri-food supply chain","authors":"Misagh Rahbari,&nbsp;Alireza Arshadi Khamseh,&nbsp;Mohammad Mohammadi","doi":"10.1016/j.compchemeng.2024.108914","DOIUrl":null,"url":null,"abstract":"<div><div>The agri-food supply chain management plays a crucial role in ensuring the interests of supply chain components and food security in society. Additionally, due to the nature of agri-food products, sustainability dimensions have always been of concern to organizations engaged in this field. The importance of the timely and quality provision of agri-food products has doubled after the global crisis. Therefore, this study focuses on optimizing and analyzing the sustainable multi-objective closed-loop supply chain network for agri-food products, with a case study on the canned food under uncertainty. Strategic and operational decisions and other features are considered to achieve more accurate results. To address the various dimensions of sustainability, the problem is considered as a four-objective one, aiming to maximize the use of available production throughput for factories, maximize job opportunities created, minimize supply chain costs, and ultimately minimize unmet demands. The carbon cap and trade mechanism is used to control greenhouse gas emissions in the supply chain network. A robust scenario-based stochastic chance constrained programming approach is employed to deal with the uncertainty, and also validation is performed using various criteria. Moreover, an augmented ε-constraint optimization approach is used to solve the multi-objective problem and achieve Pareto optimal solutions. Finally, sensitivity analysis is employed to prepare for potential changes in some problem parameters.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108914"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003326","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The agri-food supply chain management plays a crucial role in ensuring the interests of supply chain components and food security in society. Additionally, due to the nature of agri-food products, sustainability dimensions have always been of concern to organizations engaged in this field. The importance of the timely and quality provision of agri-food products has doubled after the global crisis. Therefore, this study focuses on optimizing and analyzing the sustainable multi-objective closed-loop supply chain network for agri-food products, with a case study on the canned food under uncertainty. Strategic and operational decisions and other features are considered to achieve more accurate results. To address the various dimensions of sustainability, the problem is considered as a four-objective one, aiming to maximize the use of available production throughput for factories, maximize job opportunities created, minimize supply chain costs, and ultimately minimize unmet demands. The carbon cap and trade mechanism is used to control greenhouse gas emissions in the supply chain network. A robust scenario-based stochastic chance constrained programming approach is employed to deal with the uncertainty, and also validation is performed using various criteria. Moreover, an augmented ε-constraint optimization approach is used to solve the multi-objective problem and achieve Pareto optimal solutions. Finally, sensitivity analysis is employed to prepare for potential changes in some problem parameters.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信