Deep Fourier Residual method for solving time-harmonic Maxwell's equations

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jamie M. Taylor , Manuela Bastidas , David Pardo , Ignacio Muga
{"title":"Deep Fourier Residual method for solving time-harmonic Maxwell's equations","authors":"Jamie M. Taylor ,&nbsp;Manuela Bastidas ,&nbsp;David Pardo ,&nbsp;Ignacio Muga","doi":"10.1016/j.jcp.2024.113623","DOIUrl":null,"url":null,"abstract":"<div><div>Solving PDEs with machine learning techniques has become a popular alternative to conventional methods. In this context, Neural networks (NNs) are among the most commonly used machine learning tools, and in those models, the choice of an appropriate loss function is critical. In general, the main goal is to guarantee that minimizing the loss during training translates to minimizing the error in the solution at the same rate. In this work, we focus on the time-harmonic Maxwell's equations, whose weak formulation takes <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mrow><mi>curl</mi></mrow><mo>,</mo><mi>Ω</mi><mo>)</mo></math></span> as the space of test functions. We propose a NN in which the loss function is a computable approximation of the dual norm of the weak-form PDE residual. To that end, we employ the Helmholtz decomposition of the space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mrow><mi>curl</mi></mrow><mo>,</mo><mi>Ω</mi><mo>)</mo></math></span> and construct an orthonormal basis for this space in two and three spatial dimensions. Here, we use the Discrete Sine/Cosine Transform to accurately and efficiently compute the discrete version of our proposed loss function. Moreover, in the numerical examples we show a high correlation between the proposed loss function and the <em>H</em>(curl)-norm of the error, even in problems with low-regularity solutions.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"523 ","pages":"Article 113623"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008714","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Solving PDEs with machine learning techniques has become a popular alternative to conventional methods. In this context, Neural networks (NNs) are among the most commonly used machine learning tools, and in those models, the choice of an appropriate loss function is critical. In general, the main goal is to guarantee that minimizing the loss during training translates to minimizing the error in the solution at the same rate. In this work, we focus on the time-harmonic Maxwell's equations, whose weak formulation takes H0(curl,Ω) as the space of test functions. We propose a NN in which the loss function is a computable approximation of the dual norm of the weak-form PDE residual. To that end, we employ the Helmholtz decomposition of the space H0(curl,Ω) and construct an orthonormal basis for this space in two and three spatial dimensions. Here, we use the Discrete Sine/Cosine Transform to accurately and efficiently compute the discrete version of our proposed loss function. Moreover, in the numerical examples we show a high correlation between the proposed loss function and the H(curl)-norm of the error, even in problems with low-regularity solutions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信