Tobias Hülser , Bjarne Kreitz , C. Franklin Goldsmith , Sebastian Matera
{"title":"Multilevel on-the-fly sparse grids for coupling coarse-grained and high fidelity models in heterogeneous catalysis","authors":"Tobias Hülser , Bjarne Kreitz , C. Franklin Goldsmith , Sebastian Matera","doi":"10.1016/j.compchemeng.2024.108922","DOIUrl":null,"url":null,"abstract":"<div><div>Coupling microscopic high-fidelity models, such as microkinetic models, into continuum scale simulations can easily become intractable in practice due to the costs of the high-fidelity model evaluation. To lift this burden, we present a novel multilevel self-consistent on-the-fly sparse grid approach, which integrates the construction of surrogates of the high-fidelity model in a multilevel fashion into the continuum solution process. Besides its efficiency, an appealing feature of the approach is its simplicity and robustness. A single hyperparameter controls the whole workflow, from training set design to the accuracy of the reactor model. We demonstrate the methodology on a recent microkinetic model for catalytic combustion in a fixed-bed reactor model as a representative example. Already with modest numbers of data, the approach achieves sufficient accuracy, reducing the effort by orders of magnitude compared to a direct coupling.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108922"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003405","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Coupling microscopic high-fidelity models, such as microkinetic models, into continuum scale simulations can easily become intractable in practice due to the costs of the high-fidelity model evaluation. To lift this burden, we present a novel multilevel self-consistent on-the-fly sparse grid approach, which integrates the construction of surrogates of the high-fidelity model in a multilevel fashion into the continuum solution process. Besides its efficiency, an appealing feature of the approach is its simplicity and robustness. A single hyperparameter controls the whole workflow, from training set design to the accuracy of the reactor model. We demonstrate the methodology on a recent microkinetic model for catalytic combustion in a fixed-bed reactor model as a representative example. Already with modest numbers of data, the approach achieves sufficient accuracy, reducing the effort by orders of magnitude compared to a direct coupling.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.