Constructing arbitrary write via puppet objects and delivering gadgets in Linux kernel

IF 4.8 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Danjun Liu , Xuan Meng , Pengfei Wang, Xu Zhou, Wei Xie, Baosheng Wang
{"title":"Constructing arbitrary write via puppet objects and delivering gadgets in Linux kernel","authors":"Danjun Liu ,&nbsp;Xuan Meng ,&nbsp;Pengfei Wang,&nbsp;Xu Zhou,&nbsp;Wei Xie,&nbsp;Baosheng Wang","doi":"10.1016/j.cose.2024.104189","DOIUrl":null,"url":null,"abstract":"<div><div>Researchers have proposed various methods to perform kernel exploitation, which facilitates vulnerability evaluation and fixing. To sum up, traditional approaches tend to construct ROP chains or perform arbitrary write to escalate privileges. However, the former depends on some unusual ROP gadgets to save the stack frame pointer and demands adequate kernel memory space to hold the ROP chain. Additionally, to construct arbitrary write, existing approaches either rely on the usability of a certain kernel object or have restrictions on the write value. These limitations sometimes hinder the exploitation of the vulnerability.</div><div>In this paper, to overcome the limitations of existing exploitation strategies, we propose an elegant approach, which uses <em>puppet objects</em> and <em>delivering gadgets</em> to construct arbitrary writes. This approach relies on common ROP gadgets, requires less controllable memory, imposes fewer restrictions, and features a concise exploitation process. We also devise a tool named <span>PODE</span> to automatically identify puppet objects in Linux kernel and select suitable puppet objects and delivering gadgets for a given vulnerability. We evaluate <span>PODE</span> using 22 real-world kernel vulnerabilities and successfully exploit 16 of them using puppet objects, demonstrating that it not only diversifies the ways to perform kernel exploitation but also escalates the exploitability of kernel vulnerabilities.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"150 ","pages":"Article 104189"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824004942","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers have proposed various methods to perform kernel exploitation, which facilitates vulnerability evaluation and fixing. To sum up, traditional approaches tend to construct ROP chains or perform arbitrary write to escalate privileges. However, the former depends on some unusual ROP gadgets to save the stack frame pointer and demands adequate kernel memory space to hold the ROP chain. Additionally, to construct arbitrary write, existing approaches either rely on the usability of a certain kernel object or have restrictions on the write value. These limitations sometimes hinder the exploitation of the vulnerability.
In this paper, to overcome the limitations of existing exploitation strategies, we propose an elegant approach, which uses puppet objects and delivering gadgets to construct arbitrary writes. This approach relies on common ROP gadgets, requires less controllable memory, imposes fewer restrictions, and features a concise exploitation process. We also devise a tool named PODE to automatically identify puppet objects in Linux kernel and select suitable puppet objects and delivering gadgets for a given vulnerability. We evaluate PODE using 22 real-world kernel vulnerabilities and successfully exploit 16 of them using puppet objects, demonstrating that it not only diversifies the ways to perform kernel exploitation but also escalates the exploitability of kernel vulnerabilities.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Security
Computers & Security 工程技术-计算机:信息系统
CiteScore
12.40
自引率
7.10%
发文量
365
审稿时长
10.7 months
期刊介绍: Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world. Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信