{"title":"Dirac oscillator in a symmetric sextic anharmonic double-well potential","authors":"Wajdi A. Gaddah","doi":"10.1016/j.physleta.2024.130108","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the relativistic Dirac analogue of a one-dimensional Schrödinger oscillator in a symmetric sextic anharmonic double-well potential, constructed via a non-minimal substitution technique. We show that the large component of the Dirac spinor obeys a Schrödinger-like equation, whose eigenvalues are used to determine the relativistic energy levels. These eigenvalues are computed using high-order Bender-Wu perturbation theory, resulting in an algebraic recursion relation for the expansion coefficients. A proper analytic formula describing the large-order behavior of these coefficients is derived, revealing their asymptotic factorial divergence. Additionally, a conjecture illustrating the dependence of these coefficients on the energy quantum numbers is proposed and confirmed. To overcome the challenge posed by the divergent nature of the perturbative eigenvalue expansion, Borel resummation with conformal mapping and Padé approximation are employed, leading to accurate results of the relativistic energy levels and their non-relativistic counterparts as functions of the coupling constants.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"530 ","pages":"Article 130108"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960124008028","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the relativistic Dirac analogue of a one-dimensional Schrödinger oscillator in a symmetric sextic anharmonic double-well potential, constructed via a non-minimal substitution technique. We show that the large component of the Dirac spinor obeys a Schrödinger-like equation, whose eigenvalues are used to determine the relativistic energy levels. These eigenvalues are computed using high-order Bender-Wu perturbation theory, resulting in an algebraic recursion relation for the expansion coefficients. A proper analytic formula describing the large-order behavior of these coefficients is derived, revealing their asymptotic factorial divergence. Additionally, a conjecture illustrating the dependence of these coefficients on the energy quantum numbers is proposed and confirmed. To overcome the challenge posed by the divergent nature of the perturbative eigenvalue expansion, Borel resummation with conformal mapping and Padé approximation are employed, leading to accurate results of the relativistic energy levels and their non-relativistic counterparts as functions of the coupling constants.
期刊介绍:
Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.