Applications of 129Xe and PFG NMR techniques on adsorption and diffusion of molecular sieve materials

IF 2.624
Shushu Gao , Jiamin Yuan , Fangxiu Ye , Zhiqiang Liu , Anming Zheng , Shutao Xu
{"title":"Applications of 129Xe and PFG NMR techniques on adsorption and diffusion of molecular sieve materials","authors":"Shushu Gao ,&nbsp;Jiamin Yuan ,&nbsp;Fangxiu Ye ,&nbsp;Zhiqiang Liu ,&nbsp;Anming Zheng ,&nbsp;Shutao Xu","doi":"10.1016/j.jmro.2024.100180","DOIUrl":null,"url":null,"abstract":"<div><div>Molecular sieves possess unique properties and have emerged as the predominant catalysts with shape selectivity in the petrochemical industry because of their well-defined pore architectures. However, the existence of a constrained pore surroundings of molecular sieves can limit intracrystalline diffusion, leading to underutilization of the active volume of the molecular sieve or rapid catalysts deactivation during catalytic processes. Moreover, the mechanism of adsorption and diffusion of molecules inside molecular sieves is crucial for the optimization and advancement of catalysts in heterogeneous catalysis. Due to the complexity of the diffusion process in molecular sieve materials, it is very necessary to develop characterization methods that are more sensitive and informative for studying the adsorption and diffusion of guests inside pores. Advancements in characterization techniques and theoretical calculations have led to a more profound comprehension of the adsorption and diffusion properties of molecular sieves at the microscopic scale. This article mainly summarizes the research progress of molecular adsorption and diffusion in molecular sieve materials using advanced <sup>129</sup>Xe NMR, hyperpolarized (HP) <sup>129</sup>Xe NMR, and pulsed-field gradient (PFG) NMR techniques in recent years and focuses on the principles of these techniques and applicability of the relationship of adsorption-diffusion using these techniques within several molecular sieve systems. Moreover, the effects of the topology and pore connectivity of molecular sieves on the adsorption and diffusion of guest molecules as well as the effects of intracrystalline diffusion on catalytic reactions are discussed.</div></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"21 ","pages":"Article 100180"},"PeriodicalIF":2.6240,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441024000359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular sieves possess unique properties and have emerged as the predominant catalysts with shape selectivity in the petrochemical industry because of their well-defined pore architectures. However, the existence of a constrained pore surroundings of molecular sieves can limit intracrystalline diffusion, leading to underutilization of the active volume of the molecular sieve or rapid catalysts deactivation during catalytic processes. Moreover, the mechanism of adsorption and diffusion of molecules inside molecular sieves is crucial for the optimization and advancement of catalysts in heterogeneous catalysis. Due to the complexity of the diffusion process in molecular sieve materials, it is very necessary to develop characterization methods that are more sensitive and informative for studying the adsorption and diffusion of guests inside pores. Advancements in characterization techniques and theoretical calculations have led to a more profound comprehension of the adsorption and diffusion properties of molecular sieves at the microscopic scale. This article mainly summarizes the research progress of molecular adsorption and diffusion in molecular sieve materials using advanced 129Xe NMR, hyperpolarized (HP) 129Xe NMR, and pulsed-field gradient (PFG) NMR techniques in recent years and focuses on the principles of these techniques and applicability of the relationship of adsorption-diffusion using these techniques within several molecular sieve systems. Moreover, the effects of the topology and pore connectivity of molecular sieves on the adsorption and diffusion of guest molecules as well as the effects of intracrystalline diffusion on catalytic reactions are discussed.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信