{"title":"Gradient-based differential neural network to time-varying constrained quadratic programming","authors":"Bolin Liao , Yang Zeng , Tinglei Wang , Zhan Li","doi":"10.1016/j.eswa.2024.125893","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel approach to solving time-varying quadratic programming (TVQP) problems with time-dependent constraints, using gradient-based differential neural networks (GDNN). We establish the theoretical framework for both conventional gradient neural networks (CGNN) and GDNN models, highlighting their effectiveness in addressing dynamic optimization challenges. Comparative theoretical analyses show that the proposed GDNN model achieves higher accuracy than the CGNN model, significantly reducing solution errors with exponential convergence. Moreover, the use of a sign-bi-power activation function (SBPAF) ensures reasonable convergence times for the GDNN model. Our approach is validated through simulations of TVQP problems under specific constraints. The results demonstrate that while both models are capable of solving these problems, the GDNN model outperforms the CGNN model in minimizing optimization errors (residual errors), especially when varying the scaling factor <span><math><mi>γ</mi></math></span>, the GDNN model also shows superior performance and more efficient convergence.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"264 ","pages":"Article 125893"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095741742402760X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel approach to solving time-varying quadratic programming (TVQP) problems with time-dependent constraints, using gradient-based differential neural networks (GDNN). We establish the theoretical framework for both conventional gradient neural networks (CGNN) and GDNN models, highlighting their effectiveness in addressing dynamic optimization challenges. Comparative theoretical analyses show that the proposed GDNN model achieves higher accuracy than the CGNN model, significantly reducing solution errors with exponential convergence. Moreover, the use of a sign-bi-power activation function (SBPAF) ensures reasonable convergence times for the GDNN model. Our approach is validated through simulations of TVQP problems under specific constraints. The results demonstrate that while both models are capable of solving these problems, the GDNN model outperforms the CGNN model in minimizing optimization errors (residual errors), especially when varying the scaling factor , the GDNN model also shows superior performance and more efficient convergence.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.